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Outline

1. Introduction

2. Diagnostics

3. Results (overall and case studies)
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● Develop a generic tool (not problem specific)
● Ingesting large amounts of L2 spectra

● Choose relevant diagnostics

based on simple statistics over wave spectra (averages, bins, etc ...)

Introduction

Identify issues in data provision

Qualify L2 processing

Promote SWIM data
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COMPUTING PLOTTINGSWIM L2

MFWAM

S1
• 2D and 1D
• Bins

AVERAGING

• Mean
• Histograms

• Moments

Diagnostics – overview (current state)

If available
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Slopes spectra
6, 8, 10° and combined

posneg =0,1 distinguished
+partitions

MFWAM model
Sentinel 1 SAR 
 when available

(<1.5 hours, <100 km)

Diagnostics - computing

SWIM L2

Colocated spectra

Symmetric elevation spectrum

+ Flagging
+ HS, U10 from ECMWF

link
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../../../net/data/results/ggoimard/CASYS/casys/cross_overs/jan-2021/1000km_deltaT-120min_20210113-110000_to_20210113-154159/global.html


N,S

E,W

Along 
track

ϕp

Diagnostics - averaging

Raw data Cone Fatal Geophysical signal

+ detailed by sea-state
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Mean 2D spectra
Mean 1D 
spectrum 
moments

Mean 0D 
moments

Dimensionality

Ease of display & interpretation

Diagnostics - plotting
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Overall performances

Worldwide data from 01/01/2021 to 01/03/2021
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Valid points histogram
N,S

E,W

SWIM 6°

SWIM combined

SWIM 8°

SWIM 10°

Flagged data :
6°>8°>10°>combined
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Valid points histogram

Along-
track

Cross-
track

SWIM 6°

SWIM combined

SWIM 8°

SWIM 10°

Flagged data :
6°>8°>10°>combined

Mostly located around 
the along-track direction
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Mean 2D spectra
N,S

E,W

SWIM 6°

Sentinel-1

MFWAM

SWIM combinedSWIM 10°

SWIM 8°
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Mean 2D spectra
ϕ

p

SWIM 6°

Sentinel-1

MFWAM

SWIM combinedSWIM 10°

SWIM 8°
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1D spectra
SWIM 10°

MFWAM

Above 4-5 kp  : 
mostly noise

Short waves 
generally less 
energetic than 

MFWAM
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Mean 1D spectra overlay

Compliant with 
mean 2D spectra
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Abacus - principle
• Detail by sea-state
• Abstract cartography

Wave growth laws adapted from Elfouhaily et al. 1997

1 bin ≈ 1 spectrum

SWIM – HS, kp abacus
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Pseudo H
S
 abacus

SWIM 6°

Sentinel-1

MFWAM

SWIM combinedSWIM 10°

SWIM 8°

Compliant with 
mean 2D spectra
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Specific addresses
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Regional studies

PAP

SWIM 10°

World

SE Asia

Indian OceanSouthern Ocean

North Pacific
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Frequency width

SWIM 10° MFWAM Sentinel-1

SWIM markedly more peaked than 
MFWAM, especially at low sea-states

→ D. Hauser 
presentation
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Directional spread at peak

SWIM 6°

Sentinel-1

MFWAM

SWIM combinedSWIM 10°

SWIM 8°

Quite similar directionalities 
from beam to beam

Differences with MFWAM at 
low sea-states

→ D. Hauser 
presentation
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MTF1 vs MTF3
M

TF
1

M
TF

3
SWIM 6° SWIM 10° MFWAM

MTF3 less noisy 
than MTF1

→ C. Tourain 
presentation
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Partitioning (on going work)

SWIM 10°, full
SWIM 10°, 1st partition

SWIM 10°, 2nd partition
SWIM 10°, 3rd partition

→ A. Ollivier 
presentation
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Pseudo 1d Stokes drift

SWIM 10° MFWAM
Ardhuin et al. 2009

There is some geophysical signal at scales smaller than the 
peak : interesting to investigate
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Conclusions

➔  Diagnostic tool for the investigation of SIM ocean waves spectra scientific 
performance

•Visualize large amounts of 2D spectra
•Trigger CAL/VAL and scientific investigations
•Illustrate SWIM performances

➔Main observations
• Beam qualities compliant with known performances

• Spectrum noisy above 4-5 k
p

•SWIM spectra markedly more peaked both in frequency and direction than modeled ones 
(especially low sea-states)

➔ Further investigations
• Characterize variability (noise and geophysical)
• Add diagnostics

cpeureux@groupcls.com
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