CFOSAT Second International Science Team Meeting

On the First Observed Wave-Induced Stress over the Global Ocean

Sheng Chen^{1,2,3}, Anna Rutgersson⁴, Xunqiang Yin^{1,2,3}, Ying Xu⁵, Fangli Qiao^{1,2,3*} 2021/03/16

¹First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China

²Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China

³Key Laboratory of Marine Sciences and Numerical Modeling, Ministry of Natural Resources, Qingdao, China ⁴Uppsala University, Uppsala, Sweden

⁵National Satellite Ocean Application Service, Beijing, China

CONTENTS

Background and Aims

Wind and Wave Data Process

Results and Discussions

Conclusions

Background and Aims

Wave Climate

Ocean waves: fundamental and ubiquitous phenomenon Influence: human life, industrial activities Importance: geophysical processes, momentum exchange Study: both societal and scientific perspectives.

(Semedo et al. 2011)

Background and Aims

× + + + × +

Wave-Induced Stress

$$\tau_{w} = \rho_{w}g \int d\omega d\theta S_{in}/c \qquad \tau_{w}(0) = \int_{0}^{\infty} \rho_{w}\omega\beta\Phi(\omega) \,\mathrm{d}\omega$$

Background and Aims

Wind & Wave spectra

- (1) Global ocean: surface wave-induced stress
- (2) Surface wind stress inversion

Data Process

Step 1: Wavenumber range

(Hauser et al. 2020)

Datasets: 2019.8-2019.11, 4 months

Wave spectra: beam 10°

Low frequency: Parasitic peak

Possible maximum period of swell: 25 s

Wavenumber: $k_{min} = 0.0065 \text{ m}^{-1}$

Data Process

Step 2: Wind and wave cell match

SWIM-Wave: 13 days SCAT-Wind: 3 days

1. Time: T_{SWIM} - 4 s < T_{SCAT} < T_{SWIM} + 4 s (Each moment: wave cell \Longrightarrow 42 or 84 wind cell) 2. Longitude & Latitude: Sum of the difference between wind and wave cell in longitude plus that in latitude is the minimum

Data Process

Step 3: Grid the data

13-day wind speed pattern

overlapping effect: indistinct

3°×3°: monthly average 90°N 45°N 15 00 CFOSAT 12 45°S 90°S 90°N 6 45°N □ ERA5 00 45°S 90°S 120°E 180°W 60°E 180°W 120°W 60°W 00 Meridional mean 10 Correlation: 0.83 Difference: ~30% 180°W 180°W 60°E 120°E 120°W 60°W

Swell index (SI)

×

Monthly variation

- Monthly change (Aug. to Nov.): NH to SH
- Close to the equator: swell energy > 60%

Wave-induced stress

Wind-sea spectrum: $S(f) = \frac{\alpha g^2 f^{-4}}{(2\pi)^4} f_p^{-1} \exp(-\left(\frac{f_p}{f}\right)^4) \gamma^{\Gamma}$ Swell spectrum: $S(f) = S(f) \exp\left[\left(\frac{f}{f_0}\right)^3\right]$ (Donelan et al. 1985)

Maximum wavenumber: $k_{cmax} = 0.277 \text{ m}^{-1} \longrightarrow f_{cmax} = 0.2622 \text{ Hz}$ $U_{10c} = 0.83 \text{ g/}(2\pi f_{cmax})$

Wave-induced stress

Factor : wind and wave fields

0

-20

-40 -60

-80

-100

Nov.

180°W 120°W

00

60°E

 $60^{\circ}W$

Wind stress $\tau = \tau_{turb} + \tau_{wave}$

Percentage of increase or decrease in wind stress $\frac{Aug.}{45^{\circ}N} + 30\% \text{ (Wind-sea)}$

120°E 180°W-10 0 10 20 30 40

90°N

0°

45°S

90°S

- 10% (Swell)

Aug.: Comparison with ERA5

Conclusions

(1) Global ocean: surface wave-induced stress

(2) Surface wind stress inversion

- For the first time CFOSAT realizes the inversion of the surface wave-induced stress, and then the wind stress.
- The wave-induced stress can increase zonal mean wind stress by more than 30%.
- The temporal and spatial variations of wave-induced stress are closely related to the global wind and wave fields.

THANKS!

Chen, S., Rutgersson, A., Yin, X., Xu, Y., Qiao, F. (2020). On the First Observed Wave-induced Stress over the Global Ocean. *Journal of Geophysical Research: Oceans*, e2020JC016623. doi:10.1029/2020JC016623