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Previous studies

Buoys and stations

» Swells can propagate over a very long distance in the ocean [Munk et al.,

1963; Snodgrass et al., 1966];

» Snodgrass et al. [1966] have tried to calculate the rate of decaying with data

from stations set along the great circle from New Zealand to Alaska.

Stations set along the ocean. [Snodgrass et al., 1966]



Previous studies

Satellites

No wave direction
or wave period

c) Young et al. [2013] adopt the database of altimeter accompanied with

model data for calculating dissipation rates.

Complex process
of inversion

d) With the L2 product of SAR, Collard et al. [2009] propose a new method

of tracking the routes of swells along great circles of earth, and get the

dissipation rate for swells with 15s period.

We did some case studies with data from SWIM because the SWIM
can provide the wave spectrum, and the data is more accurate.
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Finding the source storm of swells.
[Collard et al., 2009]



Data and method
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Results and analysis
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Results and analysis

Direction / °

Partition the wave spectrum of NDBC buoy data
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Results and analysis X = .

source SWIM

* Comparison of wave spectra
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Results and analysis X = .

source SWIM\/ Buoy\/
e Spectrum width
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Results and analysis X o ~*
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Results and analysis x g >
source SWIM\/ Buoy\/
* Wave-turbulence interaction
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Results and analysis X - o -

source SWIM

 Air-sea interaction

the distance along tf;e surface on a great circle
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Comparation of observed data and theoretical decay
(without considering dissipation).



Results and analysis x g >
source SWIM Buoy
- - - - - V V
° D|SS|pat|0n VS dlspersmn
5
4 — —
Decay of SWH < 3f |
'\ E
=
o, _
1k _
I dispersion
I dissipation
0 | | | | | | | | [ 1 1 |
0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62
Spectral Width

Percentage of swell decay caused by dispersion and dissipation.

13



Conclusions

We find 25 tracks which correspond to 4 storms from May to August 2019.

* |t takes about 10 days for swells to cross the Pacific from the southern ocean to
the western coast of America.

* A larger value of wave spectral width corresponds to a faster variance of swh and
wavelength.

* The value of swh from observation fits well with the theory of wave-turbulence
Interaction when the coefficient b is around 0.03.

* The dissipation rate we get here is between -1.5 ~3x10-"m-1.

* Swell decay caused by dispersion increases with the increase of wave spectrum.
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Thank you for your attention!
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