CFOSAT 2nd International Science team Meeting

CFOSAT and Sentinel-1 intercomparisons for Significant Wave Height measurements

March 2021
Visio meeting
LOPS SIAM(1) - University of Hawaii(2)
Antoine Grouazel(1), Justin Stopa(2), Alexis Mouche(1) and Bertrand Chapron(1)
Abstract

This study provides a comparison between CFOSAT and Sentinel-1 wave measurements. Recently, new methods have been developed to analyze Sentinel-1 C-band SAR data acquired over open ocean in the so-called Wave Mode for estimating the significant wave height [Quach et al., 2020] and for classifying the images with respect to the dominant geophysical parameter [Wang et al., 2019]. These two informations are systematically derived from Sentinel-1 A and Sentinel-1 B measurements collocated with CFOSAT. The significant wave height as measured by CFOSAT and Sentinel-1 are then compared. Performances (RMSE, correlation and bias) are presented and analyzed with respect to geographical location, wind regimes and dominant geophysical signatures captured by the SAR. Emphasis on complex situations and/or inconsistent cases are discussed.
Datasets

CFOSAT SWIM Ku-band spectrometer nadir beam Level-2 CWWIC at box 70 x 90 km resolution. Adaptive retracking algorithm. CFOSAT and Sentinel-1 units present heliosynchronous orbits that offer very long matchups opportunities. The time criteria used for this study is +/-2 hours and 100 km radius.

Aviso altimetry courtesy.

Sentinel-1 A & B WV C-band SAR. Leapfrog acquisitions 24° and 37° incidence angle every 200 km (~ 3 seconds) at global scale, Hs dataset build using Quach et al 2020 NN model develop at University of Hawaii and operated at IFREMER in the frame of 2 ESA projects:
- Sentinel-1 MPC (Mission Performance Center)
- CCI Sea state (algorithm selected for official CCI datasets)

CFOSAT international science team meeting March 2021
Matchups between SWIM and Sentinel-1 WV

$\Delta T : +/−2$ hours
Δgeographic: 100 km

S1A and S1B are matching CFOSAT 100 km radius with 1 or 2 hours advance.
This algorithm has been published in IEEE TGRS in 2020.

The method aims at investigating the use of DL to start from X-spectra instead of using a predefined decomposition of the x-spectra (so-called CWAVE parameters).

This algorithm has been compared against other algorithms in the framework of CCI and proved to be better for H_s.

Example of Real part of X-spectra and the 20 parameters computed from the spectra for CWAVE

CFOSAT international science team meeting March 2021
SAR NN model to get Hs from WV cross spectra

Quach 2020 et al methodology described in this paper:

https://authors.library.caltech.edu/104562/1/09143500.pdf

Source datasets for NN model training:

1. Sentinel-1 WV L2 polar cross spectra + radar parameters
2. Altimeter database from IMOS (Young et al).

CFOSAT SWIM measurement are not considered in the training dataset.
Overall collocations Hs statistics
The Hs provided by NN model is associated to an uncertainty value. In Quach et al 2020 this uncertainty is the standard deviation of the difference between NN predictions and reference dataset. The 2 figures above are showing that this metric is directly linked with the Hs value but is not performant to detect anomalous observations-predictions.
The rain flag provided by CWWIC in the L2 SWIM nadir product allows to remove some outliers. Overall, it doesn’t change significatively the performances (even if it reduces by 16% the number of points). This could be a clue that this flag could be improved.

While the sigma0 bloom flag provided is not usable in the latest 5.1.2 version.

CFOSAT international science team meeting March 2021
SWIM sigma0 bloom flag

SWIM sigma0 bloom flag is designed to filter very low backscatter regions where the Hs retrieval using the altimeter waveforms is not possible or susceptible to be biased. The content of this flag is for now not usable because more than 50% of SWIM boxes are set to 100% bloom. The map is also showing no regional patterns but only full orbits flag with the same value.
Focus on very low Hs predictions with Quach et al 2020 SAR algorithm.
Selection of 17 Sentinel-1 WV images with Hs < 0.7m

SWIM Hs = 0m are discussed slide 14.
Focus on very low Hs predictions with Quach et al 2020 SAR algorithm.

One example of the ocean surface roughness nice display giving a cross spectra with peak of energy along the azimuth axis and ultimately too low Hs.

This image is showing vertical black lines that are artefacts impacting spectral Fourier transform and then Hs retrieval.

Selection of 17 Sentinel-1 WV images with Hs < 0.7m

Validation CCI Sea State S-1 wV1 Hs predictions versus CFOSAT SWIM

2019-04-01T04:56:15.000000000 2021-02-20T01:29:04.000000000

N: 56897
μ = 0.09 m
σ = 0.35 m
SI = 12.1 %
RMSE = 0.35 m
cor = 96.92%
The 17 WV images with $H_s < 0.7$ m are:

- Images with artefact
- Images with low frequency atmospheric or biological contamination
Few SWIM Hs are equal to zero m. They are located along same orbits at the beginning of the mission in 2019, it is very likely corrupted files.
WV classified as “Pure Ocean Swell” by the Deep Learning algorithm developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
WV classified as “Atmospheric Front” by the Deep Learning algorithm developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
WV classified as “Low wind speed Area” by the Deep Learning algorithm developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
WV classified as "Biological Slicks" by the Deep Learning algorithm developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
This figure is illustrating the fact that for some SAR images containing non wave geophysical features, the Hs retrieval is not giving the same performances. For instance we can see that the class SI (sea Ice), or LWA (Low Wind Area) have scatter about ~40% higher than Pure Ocean Swell (POS).
CFOSAT international science team meeting March 2021
3 case studies to illustrate the performances of both products
Example showing performances of the products along an orbit

The Hs given by SWIM and Sentinel-1 are in good agreement for all the matchups along this orbit except for cases where the SAR image show the presence of rain cell (see surface roughness above).
Second case study with orbits crossing strong sea state region.

On this case with high Hs we selected the pair SWIM-S1 with the largest difference of Hs. The SAR image is not disturbed by low frequency contamination and the NN model gives a 11 m Hs while SWIM nadir beam is measuring 13 m. This is explained by the sharp sea state change within the 100km separating SWIM and the WV1.
Second case study with orbits crossing strong sea state region.

Cross Spectra (real and imaginary part) + WW3 wave height spectra associated to the suspect WV Hs.
the WV1 just before (#011) 200 km North is in better agreement with SWIM while both products indicate higher Hs. It is simply due to the fact that this matchup has a closer spatial distance and less Hs gradient between the 2 points. This a very encouraging result to see that both products manage to provide Hs with less than 50cm difference within a 13-14m Hs.
Second case study with orbits crossing strong sea state region.

The SWIM 5Hz is a bit noisy but most of the 5Hz points are within the uncertainty given by S-1 NN model.
This second case study shows that both products seem to give coherent Hs even in Hs above 12m. It also suggests that colocations between the 2 products should be done with smaller spatial distance. This could be achieved using the intermediate resolution product at 1 Hz for SWIM.
CFOSAT international science team meeting March 2021
Triple collocations (April 2019-now) over a buoy: SOUTH KODIAK - 310NM SSW of Kodiak, AK

On this example we can see that the SWIM have a point that is +1.8m above S-1 and the +2m wrt the buoy. The collocations is may be too loose on geographic criteria (100 km), while the time and space energy distribution within the 2 products seems coherent.
Triple collocations (April 2019-now) over a buoy:
SOUTH KODIAK - 310NM SSW of Kodiak, AK
Triple collocations (April 2019-now) over a buoy:
SOUTH KODIAK - 310NM SSW of Kodiak, AK

Illustration of the closest S-1 WV cross spectra wrt to buoy 46066 on 2020 10th of January.

The main swell system dominated by the strong winds blowing to the East gives a quite clean SAR scene.
Triple collocations (April 2019-now) over a buoy:
SOUTH KODIAK - 310NM SSW of Kodiak, AK
Illustration of the closest S-1 WV cross spectra wrt to buoy 46066 on 2020-10th of January.

Few kilometers (~200km) to the North the same date, the swell system detected is totally different (storm coming from the North East).
CFOSAT international science team meeting March 2021
Conclusions

Independent estimates of Hs from CFOSAT (nadir beam) and Sentinel-1 (WV1 and WV2) acquisitions have been collocated and compared.

Overall the agreement between the two sensors is very good no matter Sentinel-1 acquisitions modes:

- WV1 $\mu=0.09$ m $\sigma=0.32$ m
- WV2 $\mu=0.09$ m $\sigma=0.35$ m

Surprisingly, the use of the rain flag as provided in CFOSAT (nadir beam) Level-2 product does not impact the results. However, the use of the SAR classification show that other geophysical phenomena (e.g. biological slicks) do impact the comparisons. The bloom flag as provided in CFOSAT (nadir beam) Level-2 product seems non-realistic.

Case study are also discussed. They confirm the ability of SAR and CFOSAT to capture the same sea state pattern at ocean basin scale. They also confirm the impact of geophysical phenomena such as rain on the comparisons.

A first attempt of triple colocation has been done on SOUTH KODIAK buoy. Overall it confirms the good consistency between SAR, CFOSAT and buoys:

- SAR-Buoy: $\mu=-0.05$ m $\sigma=0.23$ m
- CFOSAT-Buoy: $\mu=-0.18$ m $\sigma=0.47$ m

Perspectives

Further investigation are necessary to assess the impact of the other geophysical phenomena on CFOSAT and possibly help to refine the bloom flag and the potential/limitations of both missions in case of extremes.

The validation of the directional and wavelength information between the two sensors needs also to be pursued.
Thank you for reading, we are ready to answer your questions.