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Abstract

This study provides a comparison between CFOSAT and Sentinel-1 wave measurements. Recently, new methods have been developed to analyze Sentinel-1
C-band SAR data acquired over open ocean in the so-called Wave Mode for estimating the significant wave height [Quach et al., 2020] and for classifying the images
with respect to the dominant geophysical parameter [Wang et al., 2019]. These two informations are systematically derived from Sentinel-1 A and Sentinel-1 B
measurements collocated with CFOSAT. The significant wave height as measured by CFOSAT and Sentinel-1 are then compared. Performances (RMSE, correlation
and bias) are presented and analyzed with respect to geographical location, wind regimes and dominant geophysical signatures captured by the SAR. Emphasis on
complex situations and/or inconsistent cases are discussed.
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Matchups between SWIM and Sentinel-1 WV
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Deep Learning for Predicting Significant Wave
Height From Synthetic Aperture Radar

Brandon Quach™, Yannik Glaser™, Justin Edward Stopa™, Alexis Aurélicn Mouche™, and Peter Sadowski

Abstraci—The Seatinel-1 satellites cquipped with synthetic
aperture radars (SARs) provide nearglobal coverage of the
world’s oceans every six days. We curate a data set of collocations
between SAR and allimeter satelites and investigate the use of
decp learning to predict signif height from SAR. While
previous models for predicting geophysical quantities from SAR
iy oo vn fdere-nglbuaciag, o pervach lodens iy
from low-level inmage cross-spectra. collocations from
2015 to 2017, we demmonstrate on fest dta from 2018 that deop

learning reduces the state-of-the-art root mean squared error
by 50%, from 0.6 0 0.3 m when compared to altimeter data.
Furthermore, we isolate the contributions of different features to
the model performance.

Index Terms—CWAVE, decp learning, machine lcarning,
neural networks, Sentinel-1, significant wave height, synthetic
aperture radar (SAR).

1. INTRODUCTION
YNTHETIC aperture radar (SAR) enables us to measure
submesoscale phenomena with unprecedented coverage,
resolution, and frequency. By measuring the backscatter from
the ocean surface, SAR caplurcs information about ocean
swells and sca surface roughness at high spatial resolutions
(<10 m) |1}, from which many occanic, and

sea stales in extra-tropical and tropical cyclones [8]-{10].
A geophysical quanity of particular interest is the significant
wave height, Hy, defined as the mean of the top third of a
wave height distribution, and cstimating Hy from SAR has
immediate practical uses in alerting ships (o dangerously large
waves. Traditional “inverse” algorithms for inferring H, from
SAR are slow and perform poorly in windy conditions typical
of most storms [11], [12] because of the complex noalinear
mechanism involved in the image synihesis when obscrving
moving scenes. As a result, several recent studies have focused
on data-driven statistical models [8-{101, [13].

Previous data-driven approaches for predicting [, from
SAR used small data sets of buoy observations as tarpets
for training (<5000 examples) [14]-{16], or sumerical mod-
els of global wave generation such as WAVEWATCH3 [8],
1o, |n| [17). The cument state-of the art method uses 3
neural network trained on the latter, and
06 1t mica squared emmor (RMSF)

WAVEWATCHS3 targets are only an estimate of Hy and are
known (o be unreliable in high sea states [18]-{20].

Furthermore, the neural actwork in [10] relies oa a

reduced on of the modulati

biologic phenomeaa can be ideatified [2]. The two Scatincl-
1 salellites of the Furopean Space Agency (ESA) lake regular
SAR measurements of the ocean surface, logether covering the
entire globe every six days [3], and have already accumulaied
more than 600 TB of level-1 (L1) wave mode data. However,
in order to take full advantage of this technology and the tor-
rent of data being produced, new methods are ded

p
of 22 engincered features known as CWAVE: 13 Such
dimensionality-reduction methods can be very useful, but
often come al the cost of discarding relevant information.
We hypothesize that the SAR image modulation spectra con-
tins additional information about Hy that is lost by the
CWAVE dimensionality-roduction step. We propose o leam

useful information from the high-dimensional measurements.

Sea state information extracted from SAR has been instru
mental in understanding swell decay [1], [4], 5], improviag
swell propagadion in aumerica muxm 16], and predicting
swell amplitude: into numer
ical models [7]. w\n can also hc herygestickigionan
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the relevant deep leam-
ing with artificial neural networks, similar to what has been
done in other fickds from compater vision [21] o high-enerey
physics [22}-{24].

In this work, we address both limitations of current data
driven 1], prediction models. First, we curate 3 data set
containing direct observations of ocean wave heights by iden
tifying. 750,000 collocations of SAR and altimeter satellites.
Second, we train a statistical model 1o extract information
directly from low-level SAR image spectra using deep lear
ing. Finally, we analyze the importance of the different inputs
10 this model, and its performance in different setings.

1L DATA AND METHODS

A. Sensors, Collocations and Preprocessing
Our first contribution is a data set of historical measur-
meats from (wo types of polar-orbiting satellitcs: Scntincl-1
SAR satcllites and altimeter satellites. Becausc the satel-
lites are in diflereat orbits, their paths intersect, providing

01962892 6 2020 TEEE. Peesonsl use i pesmitiod, but sepablicationfesfistcbotion squires TEEE, pemission
See hige: for

SAR NN model to get Hs from WV cross spectra: QUACH et al 2020

This algorithm has been published in IEEE TGRS in 2020.

The method aims at investigating the use of DL to start from
X-spectra instead of using a predefined decomposition of the
x-spectra (so-called CWAVE parameters).

This algorithm has been compared against other algorithms in the
framework of CCI and proved to be better for Hs.

o

Azimuth (km)

10
Range (km)

20 40 60 B0 100 120

Example of Real part of X-spectra and the 20 parameters computed
from the spectra for CWAVE
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SAR NN model to get Hs from WV cross spectra

QUACH ¢ al.: DEEP LEARNING FOR PREDICTING SIGNIFICANT WAVE HEIGHT FROM SAR
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measurements. (¢) and (d) Plots of prediction RMSE versus measured H,, with ervor bars showing the standard deviation, (¢) and (1) Histograms of measured
Fig. 3. DNN architecture with two input types. (Top) SAR image spect H; where the data count is given in black text. In the top panels, the color denotes data density in 0.1-m bins, solid red lines represent a least square linear

comprising one real and one imaginary channel. (Bottom) 32 scalar-value
features. The SAR images are processed by multiple 2-D convolution laye
before the two branches of the network are combined by three dense layers
at the output. We predict H, in this work, but we expect that the same model
architecture could be used to predict other sea stalc parameters given an
adequate training data set.

regression, and the dashed lines represent 904 of the data. The black contours represent 50%, 75%, and 95% of the data (inner 10 ouoter) and the gray dots
represent the quantile-quantile points for 19, 10%, 50%. 90%. 95%. 99%. and 99.9%.
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Overall collocations Hs statistics

CFOSAT international science team meeting March 2021



Sentinel-1 wv1l Hsyy Quach et al 2020 [m]
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S1A wv2 Hs predictions versus SWIM

2019-04-01T02:55:57.000000000 2021-02-20T01:04:39.000000000

Sentinel-1 wv2 Hspyy Quach et al 2020 [m]

12

10 4

rain flag not used

N:53392
1=0.09m ,
0=0.35m " O ;_'f'
SI=12.2% . o i b
RMSE=0.35m ;gg
cor=96.70% . ..’ A,
) 3 ,’ﬁ\:{..? ..
% - "‘?.':.:.
R ‘1:’!3 ©
i ..-<='5~"
3 500
FEC* -
:fr.
2 4 6 8 10 12

CFOSAT SWIM nadir beam swhpox [M]

The Hs provided by NN model is associated to an uncertainty value. In Quach et al 2020 this
uncertainty is the standard deviation of the difference between NN predictions and reference
dataset. The 2 figures above are showing that this metric is directly linked with the Hs value but is

not performant to detect anomalous observations-predictions.
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S1A wv1l Hs predictions versus SWIM
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The rain flag provided by CWWIC in the L2 SWIM nadir product allows to remove some

S1A wv2 Hs predictions versus SWIM
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outliers. Overall, it doesn’t change significatively the performances (even if it reduces by 16%
the number of points). This could be a clue that this flag could be improved.
While the sigma0 bloom flag provided is not usable in the latest 5.1.2 version.
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sigma0 bloom flag from CWWIC SWIM L2
I total 109491

SWIM sigma0 bloom flag
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SWIM sigma0 bloom flag is designed to filter very low
backscatter regions where the Hs retrieval using the
altimeter waveforms is not possible or susceptible to be
biased. The content of this flag is for now not usable
because more than 50% of SWIM boxes are set to 100%
bloom. The map is also showing no regional patterns but
only full orbits flag with the same value. 0 20 40 60 80 100
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Validation CCI Sea State S-1 wv1 Hs predictions versus CFOSAT SWIM . . Y_‘J
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SWIM Hs = Om are discussed slide 14.
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Validation CCl Sea State S-1 wv1 Hs predictions versus CFOSAT SWIM
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Focus on very low Hs predictions with Quach et' "'
al 2020 SAR algorithm.
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Images with low frequency atmospheric or biological




SWIM Hs = 0 m
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Few SWIM Hs are equal to zero m. They are located along same orbits at the beginning of the
mission in 2019, it is very likely corrupted files.
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WV classified as “Pure Ocean Swell” by the Deep Learning algorithm
developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
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WYV classified as “Atmospheric Front” by the Deep Learning algorithm
developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
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WYV classified as “Low wind speed Area“ by the Deep Learning algorithm
developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
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WYV classified as “Biological Slicks® by the Deep Learning algorithm
developed by Chen et al 2018: https://www.seanoe.org/data/00456/56796/
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scatter index for Hs bt SWIM and S-1 WV

25

N
(&)

20

N
o

15

10

scatter index for Hs bt SWIM and S-1 WV

o
NI s 2 2R s e R T e T 2 y o0 0 0 o0y 00 0
. "4 4‘4 “4 $4 C ’f; ;‘t‘ 4‘4 ’3\4\ 4:& ;*4 «,4 “4 “4 4‘40 ’f: 3‘4 4‘4 $~\ . 4‘4 3‘4
7 7 7 7
&P 7 W&o SE e ® D 4 7 W&o SE®
S-1 WV roughness class S-1 WV roughness class

This figure is illustrating the fact that for some SAR images
containing non wave geophysical features, the Hs retrieval is not
giving the same performances. For instance we can see that the
class Sl (sea Ice) , or LWA (Low Wind Area) have scatter about
~40% higher than Pure Ocean Swell (POS).
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3 case studies to illustrate the
performances of both products
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Example showing performances of the products along an orbit

SWIM & Sentinel-1 WV matchups
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Second case study with orbits crossing strong sea state region.

S1:2019-12-14T08:43:42.000000000

evolution of SWH along orbits
SWIM: 2019-12-14T10:00:24.219548000 2019-12-14T08:13:42.000000000 - 2019-12-14T09:13:42.000000000
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30°N q On this case with high Hs we selected the pair SWIM-S1 with the largest difference of Hs.

40°W 35°W  30°W The SAR image is not disturbed by low frequency contamination and the NN model gives a
11 m Hs while SWIM nadir beam is measuring 13 m. This is explained by the sharp sea

state change within the 100km separating SWIM and the WV1.
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QcC : poor

Wi: 330.02 m
Dir: 12059 *
Hs: 7.46 m
Lon:-34.87°
Lat : 4977 °

QcC : poor

Wi: 330.02 m
Dir: 12059 *
Hs: 7.46 m
ion:-34.87°
Lat : 4977 °

Second case study with orbits crossing strong sea state region.

S1A Ocean Wave X Spectrum {Im)
2019-12-14 08:43:42
N

SN 35.54 NRCS :-0.93dB Az. Cut Off : 500.00 m
Ny :2.01 Track: 192.44° Incidence : 23,97 °

S1A Ocean Wave X Spectrum (Re)
2019-12-14 08:43:42
N

SnA: 35.54 NRCS :-0.93dB Az. Cut Off : 500.00 m
Nv :2.01 Track: 192.44° Incidence : 23,97 ¢

200.00
=
100.00 £
>
o
P
2
000 ¢
©
e
©
-100.00 ©
Q.
&
-200.00
1000.00
-
800.00 &
>
o
—
600.00 ©
c
[
©
400.00 £
o
Q.
&
200.00
0.00

WW3 Ocean Wave Spectrum
2019-12-14 08:00:00

Hsgrig : 10.86 m

CFOSAT international science team meeting March 2021

Cross Spectra (real and imaginary part) + WW3 wave
height spectra associated to the suspect WV Hs.
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Second case study with orbits crossing strong sea state region.

#011/ lon=-34.28 / lat=51.52 / inc=23.94

evolution of SWH along orbits
2019-12-14T08:13:42.000000000 - 2019-12-14T09:13:42.000000000
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gradient between the 2 points. I
This a very encouraging result to °© 2 4 ® swha[m]m 1214 18

see that both products manage to
provide Hs with less than 50cm
difference within a 13-14m Hs.
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Second case study with orbits crossing strong sea state region.
evolution of SWH along orbits
2019-12-14T08:38:42.000000000 - 2019-12-14T08:48:42.000000000
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Second case study with orbits crossing strong sea state region. )

This second case study shows that both products seem to give coherent Hs
even in Hs above 12m. It also suggests that colocations between the 2 products
should be done with smaller spatial distance. This could be achieve using the
intermediate resolution product at 1 Hz for SWIM.
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SWIM or S-1 WV Hs [m]

Triple collocations (April 2019-now) over a buoy:
SOUTH KODIAK - 310NM SSW of Kodiak, AK

On this example we can see that the SWIM have a point that
is +1.8m above S-1 and the +2m wrt the buoy. The
collocations is may be too loose on geographic criteria (100
km), while the time and space energy distribution within the 2

products seems coherent.

WMO 46066
Owned and maintained by National |
Data Buoy Center .
3-meter discus buoy
SCOOP payload
52.765 N 155.009 W (52°45'53" N 155°
0'32" W)
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Triple collocations (April 2019-now) over a buoy:
SOUTH KODIAK - 310NM SSW of Kodiak, AK

ECMWF_FORECAST 0100.202001100400_10U_10V.ng .
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Triple collocations (April 2019-now) over a buoy:

SOUTH KODIAK - 310NM SSW of Kodiak, AK

lllustration of the closest S-1 WV cross spectra w
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Triple collocations (April 2019-now) over a buoy:
SOUTH KODIAK - 310NM SSW of Kodiak, AK

. o
lllustration of the closest S-1 WV cross spectra wrt to buoy 46066 on 2020*10th-ofsJanuary. o
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Conclusions

Independent estimates of Hs from CFOSAT (nadir beam) and Sentinel-1 (WV1 an WV2) acquisitions have been collocated
and compared.
Overall the agreement between the two sensors is very good no matter Sentinel-1 acquisitions modes:

e WV1 4=0.09m 0=0.32m

e WV2 4=0.09m 0=0.35m
Surprisingly, the use of the rain flag as provided in CFOSAT (nadir beam) Level-2 product does not impact the results.
However, the use of the SAR classification show that other geophysical phenomena (e.g. biological slicks) do impact the
comparisons. The bloom flag as provided in CFOSAT (nadir beam) Level-2 product seems non-realistic.

Case study are also discussed. They confirm the ability of SAR and CFOSAT to capture the same sea state pattern at ocean
basin scale. They also confirm the impact of geophysical phenomena such as rain on the comparisons.

A first attempt of triple colocation has been done on SOUTH KODIAK buoy. Overall it confirms the good consistency between
SAR, CFOSAT and buoys:

e SAR-Buoy: u=-0.05m 0=0.23m

e CFOSAT-Buoy: u=-0.18m 0=0.47m

Perspectives

Further investigation are necessary to assess the impact of the other geophysical phenomena on CFOSAT and possibly help
to refine the bloom flag and the potential/limitations of both missions in case of extremes.

The validation of the directional and wavelength information between the two sensors needs also to be pursued.
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Thank you for reading, we are ready to answer your questions.
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