CFOSAT: 3rd Sciense Meeting Sep.12th-14th 2022

CHOGS STATUS

LIU JIANQIING, SUN CONGRONG, XU YING,

LIU JINPU, LANG SHUYAN, MU BO, MA XIAOFENG

Topics

> CFMC Operation

- Satellite platform monitor
- Payload TC upload
- TM and L0B data transferred to CNES
- Chinese Ground station status
- Products Distribution

Current SCAT Product & Application

- SCAT data processing software(V3.3)
- SCAT product status
- Some SCAT application
- > Recent SWIM Application
- SCAT Long-term Validation result
- Conclusion

CFMC OPERATION

10.010.01

CFMC operation : Satellite platform monitor

From launch, SCAT operation 8 times SWIM operation 4 times Platform manoeuvre 21 times Avoid collision one time

2022, until Sep.7, Platform manoeuvre 6 times

CFMC operation : Payload TC upload

From satellite launch to Sep.7, 2022: NSOAS upload 414(175) times TC, including downlink plan(24957 orbit number), platform and payload operation.

	Downlink (number)	Downlink/day (number)	Downlink (minutes)	Downlink/day (minutes)
NSOAS	4439 (↑ 982)	4	55086 (17830)	45
CNES	20518 (1 3915)	15	41036 (个7830)	31

Legend: ↑ increment until Sep.7 this year

CFMC Operation: Products Distribution

OSDDS users

• from launch to Sep.7, 2022

Item	Value
Users	343 (^131)
Countries	6 (↑2)
Amount of data distributed	195TB (^14 8)

Legend: ↑ increment in 2022

CFMC operation : TM and L0B data transferred to CNES

From launch to Sep.7, 2022

783 times TM parameters transferred to CNES

54(个19) times demand from CNES and 144.8GB(个31.7) data transferred to CNES

Data type	Number of file	volume in GB (compressed)
SCAT LOB	234 (个59)	29.5 (个7.4)
SWIM LOB	283 (个74)	115.3 (124.3)
total	517	144.8

• CNES and NSOAS exchange LOB while GS have problems at data acquisition

Legend: \uparrow increment in 2022

Chinese Ground station status

•From launch to Sep.7, 2022 •CHGS(Beijing, Sanya and Mudanjiang) ingest 5750 orbits and 36.9TB org data.

Year	Number of ingesting orbit	volume
2018	377	1.2 TB
2019	1437	8.4TB
2020	1475	12.6 TB
2021	1479	8.4TB
2022/09/07	982	6.3тв
total	5750	36.9тв

CURRENT SCAT PRODUCT & APPLICATION

SCAT Status: Wind products(L2)

Input :

- ✓ SCAT L1B data processed at NSOAS
- ✓ Ancillary data (ECMWF forecast winds, OSI SAF ice edge)

Version:

 $1.0 \rightarrow 2.0$ (2019.3) $\rightarrow 3.0$ (2020.4) $\rightarrow 3.2$ (2021.3) $\rightarrow 3.3$ (2021.12)

- Operational product
- CFO_EXPR_SCA_C_L2B_OR_YYYYMMDDTHHMMSS_xxxxx_250_VV_owv
- CFO_EXPR_SCA_C_L2B_OR_YYYYMMDDTHHMMSS_xxxxx_coa_VV_owv
- V3.3 reprocessing product(L2A,L2B) is ready to distribute (on NSOAS FTP server,2019.1.1-2022.6.30)

SCAT L1 IPF V3.3

	V3.2	Debugging	V3.3
L1A	The operation is basically normal	Routine check and maintenance of program code	Update memory management and variable allocation to improve the software robustness.
L1B	the quality of wind speed becomes worse after June 17, 2021.	The change of satellite orbit influence the temperatures of SCAT, and causes the fluctuation of signals.	Noise calibration adaptive algorithm is updated in V3.3. Fixed 1 bug in V3.2 for data processing between 600-1200 frames.

	V3.0	Debugging	V3.2/V3.3
1.	Numerical ocean calibration (NOC)	Update the LUTs of MLE normalization, QC threshold, VV /HH calibration coefficients	Update calibration coefficient

CSCAT Status: Evolution (daily monitoring)

Data: Jan 1st – Dec. 31, 2021

SD values of SCAT wind speed (a) and direction (b) w.r.t. ECMWF

CSCAT VS ASCAT

CSCAT VS ASCAT

CFOS/

	Speed SD	Dir SD
V3.0	0.78 m/s	13.3°
V3.2	0.82 m/s	13.7°
V3.3	0.75 m/s	11.8°

CSCAT VS BUOYS (WIND SPEED)

V3.3

	Speed SD
V3.0	1.27 m/s
V3.2	1.13 m/s
V3.3	1.22 m/s

	Direction SD
V3.0	18.4°
V3.2	18.1°
V3.3	17.8°

Evaluation wind product quality

(SCAT antenna failure during 2022.8.7-8.25, after antenna re-work ,data analyzing results show the product is consistent, long term analyzing is under-going)

TableThe wind vector validation results using NCEP databefore and after antenna failure on 08-Aug-2022

phase	Date range	Wind speed (m/s)		Wind direction (deg)			Num	ed (m/s)	
		bias	RMS	corr_coef	bias	RMS	corr_coef	INUIN	vind spe
before	T0 (July)	0.03	1.12	0.92	0.07	13.08	0.99	9199585	SCAT
after	T1 (25-Aug to 27-Aug)	-0.04	1.10	0.93	-0.19	12.88	0.99	826455	RF
	T2 (28-Aug to 30-Aug)	-0.08	1.10	0.92	-0.19	12.96	0.99	1005230	
	T3 (31-Aug to 02-Sep)	-0.14	1.08	0.92	-0.17	13.06	0.99	960687	

CFOSAT SCAT can provide sea wind monitoring service, especailly typhoon

Left: recent typhoon monitoring (2022, Aug. 31), typhoon eye position and the maxmium wind speed.

Middle and right: Assimilation of Winds for Typhoon, using SCAT data.

SCAT Polar Seaice Monitoring (operationl products on NOSAS)

RECENT SWIM APPLICATION

Modulation effects of mesoscale eddies on sea surface wave fields in the South China Sea derived from wave spectrometer onboard China-France Ocean Satellite

TAN Keyi et al, revised in JGR

- Using the SWIM, examine modulation effects of mesoscale eddies on sea surface wave fields in the South China Sea (SCS).
- The wave energy analysis indicates that the deformation term of eddy current is a dominant term affecting SWH at the eddy edge.
- The model results show the wave parameter variations crossing the eddy are close to that interpreted by from the SWIM data.

Variation of wind-eliminating SWH, surface current velocity and angle between current and wave directions across warm eddy

Accurate Mean Wave Period from SWIM Instrument On-Board CFOSAT

JIANG Haoyu et al, submitted to RSE

- A merged MWP retrieval model combining the nadir U10-SWH and the MWP from the spectrum of SWIM using an artificial neural network.
- Accuracy for MWP retrievals (RMSEs of ~0.36 s for zero up-crossing periods, 38 ~0.41 s for mean periods, and ~0.60 s for energy periods), demonstrating the usefulness of SWIM in the studies of ocean waves.

Comparison of the SWIM MWPs from the ANN merged retrieval model against buoy measured MWPs

Overall accuracies of multifeature combinations at all incidence angles.

Classification results in Sentinel-1 SAR images of FYI

- Ice classification using six waveform features of SWIM echo data in the Arctic.
- Compared with sea ice charts, the overall accuracy is up to 81% using the optimal classifier and a multi-feature combination at 2°.
- Multi feature combinations with the KNN method are effective in sea ice classification using SWIM data.

Arctic Sea Ice Classification Based on CFOSAT SWIM Data at Multiple Small Incidence Angles

LIU Meijie et al, Published in Remote sensing

37

Statistical comparison of ocean wave directional spectra derived from SWIM/CFOSAT satellite observations and from buoy observations XU Ying et al, summited to TGRS

developing wind wave

- A new comparison method of SWIM and buoy observations including omni spectrum and directional function at peak wave number, in different classes of sea-state.
- Under medium and high sea conditions, 8 ° and 10 °SWIM spectra have a high consistency with buoy observations.
- Under low sea conditions, bias between SWIM and buoy observation mainly due to parasitic peak, non-linear surfboard effect and a slight underestimation of speckle noise spectral density.

swell

SCAT LONG-TERM VALIDATION RESULT

SCAT LONG-TERM VALIDATION RESULT

The long-term sigma0 was monitored by analyzing the measurements over Amazon rainforest from Jan-2021 to Jul-2022. The below figure shows the deviation sigma0 by subtracting the mean sigma0.

SCAT LONG-TERM VALIDATION RESULT

The long-term validation results per month are show in below four pictures. The quality of wind speed and direction is stable from Jun-2019 to Jul-2022.

The results indicate that the performance requirements (2m/s for wind speed RMS and 20° for wind direction RMS have been met.) The long-term measurements are stable.

Conclusions

CHOGS STATUS

Since the beginning of life, the current status of the Satellite, of the Payload (SCAT, SWIM, DTS), of the Ground Segments provided by NSOAS and CNES are OK. The mission lifetime pass almost 4 years and hope to be 1-2 years more.

The mission objectives is achieved, documents, products and application show the suitability of the Satellite, of the Payload, of the Ground Segments.

Data distribution increased in the passing years and planned to delivery via WMO GTS.

