

A novel sea state classification scheme of the global CFOSAT wind and wave observations

Huimin Li^a, Bertrand Chapron^b, Douglas Vandemark^c, Chen Wang^a, Wenming Lin^a, Daniele Hauser^d, Biao Zhang^a, Yijun He^a

^aSchool of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing, China

^bIfremer, Univ. Brest, CNRS, IRD, Laboratoire d'Oc eanographie Physique et Spatiale (LOPS), IUEM, Brest, France

^cOcean Processes Analysis Laboratory, University of New Hampshire, New Hampshire, USA

^dLaboratoire Atmosphere, Milieux, Observations Spatiales (LATMOS), Universite Paris-Saclay, UVSQ, Centre National de la Recherche Scientifique (CNRS), Sorbonne Universit[´]e, Guyancourt 78280, France

2022.9.13

Motivation

- Sea state is often a mixture of wind-waves and swell.
- The wind waves are generated by local winds
 - \circ strongly coupled to local wind
 - \circ $\,$ downward momentum from the atmosphere to the ocean
- Swell is generated by remote storm:
 - \circ weakly coupled to the local winds
 - \circ occasional upward momentum
- To better understand wind-wave interactions that accounts for both wind waves and swell systems, monitoring and **categorization** of sea state are both significant.
- CFOSAT now provides concurrent wind and wave observations at global scale, laying great opportunity for such study.

- SWIM observed waves and SCAT derived wind vectors are collocated.

 $-H_s$ annotated in the L2 wave products

- U_{10} and direction in the L2 wind products
- Time period: 2019.05-2021.04

- the IPF upgraded in 2020.09 (ver 5.1.2)

- Upper plot: the count map of collocated data points with a bin of $2^{\circ} \times 2^{\circ}$. Numbers of data points are larger than 700 in most of the grids.

- **Bottom plot:** PDF of the collocated u10 and Hs with the mean of 7.3 m \cdot s⁻¹ and 2.5 m, respectively.

- Accuracy of H_s and U_{10} is validated in comparison with *in-situ* buoy measurements.
 - All buoys located within 50 km to the shoreline are excluded in the analysis.
 - The collocation criteria is 70 km in space and
 30 mins in time.
- The bias and RMSE of H_s and U_{10} is within the sensor design expectation.

Using the directional wave height spectrum $F(k, \varphi)$ from the L2 product, the following wave parameters are calculated:

Inverse wave age:

$$IWA = U_{10}/c_p$$

where c_p is the phase speed of peak waves

Mean square orbital velocity:

$$MSV = \int kF(k,\varphi)kdkd\varphi$$

Global average of U_{10} , H_s , IWA and MSV

k-means clustering

- K-means clustering is an unsupervised clustering technique that assigns the multivariate observational data vectors into different groups based on their similarity.
 - o divides the input into a priori k groups, each characterized by a cluster centroid as the prototype;
 - the clustering process is to minimize the point-to-centroid distance within each group.

k-means clustering

- The number is predefined as k=6 by taking into account the wind conditions (low, medium and high) as well as the wave maturity (wind-sea and swell).
- Silhouette score is a value in the range of [-1,1], used to represent goodness of the clustering results.

- Higher wind speed corresponds to larger SWH and MSV.
- Lower IWA, swell-dominated sea state, characterizes larger SWH for similar wind speed range.

Table 1: Details of clustered centroids.				
Class index	U10 $[m \cdot s^{-1}]$	SWH [m]	IWA	$MSV [m^2 \cdot s^{-2}]$
1	3.96	1.72	0.122	0.014
2	6.57	2.00	0.350	0.020
3	7.55	2.87	0.126	0.033
4	9.57	2.70	0.599	0.037
5	10.36	4.71	0.348	0.076
6	14.45	5.57	0.745	0.110

- Class 1 and 2 of low to median wind conditions are the most popular, while class 6 of high winds is the rarest.
- Monotonous increase of SWH and MSV with wind speed.
- Lower IWA of class 3 w.r.t. class 2 at similar U_{10} results in much larger SWH.

• PDF of each class: overlapping for each individual variate but disjoint in the 4D feature space.

• Global occurrence of frequency of the obtained 6 classes

- A novel sea state classification scheme using the k-means clustering algorithm is presented based on the concurrent CFOSAT wind and waves observations.
- Six classes are considered in terms of wind condition (low, median, high) and wave maturity (young and old sea), complementary to the previous studies of wind-sea dominated and swell dominated.
- The result also provide additional information on the regional variations of swell dominated sea state, like class 2 and 3 of low IWA.
- Sea state clustering based on long-term data series might give new perspectives on the global wave climate.

Thank you !

Contact: Huimin.li@nuist.edu.cn