Ray swell propagation in the Agulhas current through the use of different oceanic current estimates

Clément Le Goff

CFOSAT 3rd International Science Team Meeting

CFOSAT

Saint-Malo - May 13, 2022

AIS current estimates

$\overrightarrow{V_{\text {Boat/Ground }}}=\overrightarrow{V_{\text {Boat/Sea }}}+\overrightarrow{V_{\text {Sea/Ground }}}$

$$
\left\{\begin{array}{l}
V_{s o g}^{*} \sin \left(\varphi_{c o g}^{*}\right)=V_{s t w} \sin \left(\varphi_{t h}^{*}\right)+u_{d r i f t} \quad(\text { zonal }) \\
V_{s o g}^{*} \cos \left(\varphi_{c o g}^{*}\right)=V_{s t w} \cos \left(\varphi_{t h}^{*}\right)+v_{d r i f t} \quad(\text { meridional })
\end{array}\right.
$$

Space-time homogeneity of the oceanic surface current

$$
\left\{\begin{array}{cc}
V_{s o g_{1}}^{*} \sin \left(\varphi_{\operatorname{cog}_{1}}^{*}\right)=V_{s t w_{1}} \sin \left(\varphi_{t h_{1}}^{*}\right) & +u_{o s} \\
V_{\operatorname{sog} g_{1}}^{*} \cos \left(\varphi_{\operatorname{cog}_{1}}^{*}\right)=V_{s t w_{1}} \cos \left(\varphi_{t h_{1}}^{*}\right) & +v_{o s} \\
\vdots & \vdots \\
V_{\operatorname{sog} g_{n}}^{*} \sin \left(\varphi_{\operatorname{cog} g_{n}}^{*}\right)=V_{s t w_{n}} \sin \left(\varphi_{t h_{n}}^{*}\right) & +u_{o s} \\
V_{\operatorname{sog}_{n}}^{*} \cos \left(\varphi_{\operatorname{cog} g_{n}}^{*}\right)=V_{s t w_{n}} \cos \left(\varphi_{t h_{n}}^{*}\right) & +v_{o s}
\end{array}\right.
$$

$$
A x=b
$$

with A being the matrix to invert in order to calculate the oceanic surface current such as:

$$
A=\left(\begin{array}{cccccc}
1 & 0 & \sin \left(\varphi_{t h_{1}}^{*}\right) & 0 & \ldots & 0 \\
0 & 1 & \cos \left(\varphi_{t h_{1}}^{*}\right) & 0 & \ldots & 0 \\
\vdots & \vdots & & \ddots & & \\
1 & 0 & 0 & \ldots & 0 & \sin \left(\varphi_{t h_{n}}^{*}\right) \\
0 & 1 & 0 & \ldots & 0 & \cos \left(\varphi_{t h_{n}}^{*}\right)
\end{array}\right), x=\left(\begin{array}{c}
u_{o s} \\
v_{o s} \\
V_{s t w_{1}} \\
\vdots \\
V_{s t w_{n}}
\end{array}\right), b=\binom{V_{\operatorname{sog} 1}^{*} \sin \left(\varphi_{\operatorname{cog} g_{1}}^{*}\right)}{V_{\operatorname{sog} g_{1}}^{*} \cos \left(\varphi_{\operatorname{cog}}^{1}\right.}
$$

Which Depth ??

Limiting the lee-way drift due to the wind
Only cargo type vessels are kept = the ratio between the Air draught and the Water draught must be weak
(Richardson et al 1997)

AIS derived Current

All the solutions do not correspond to realistic current.

Reasons:

-Vessels are going into the same direction: over-determined system
-Stormy weather conditions
Solutions : Filtering the data by comparing the speed through water and the speed over ground

Red= ratio of the pixels we keep after filtering
Black =wind blowing with (+) or against the current (-)

Monitoring the Greater Agulhas Current With AIS Data Information

Clément Le Goff ${ }^{1}{ }^{(©)}$, Brahim Boussidi ${ }^{1}{ }^{(©)}$, Alexei Mironov ${ }^{1}$, Yann Guichoux ${ }^{1}$, Yicun Zhen ${ }^{2}{ }^{\bullet}$, Pierre Tandeo ${ }^{2}{ }^{\bullet}$, Simon Gueguen ${ }^{3}$, and Bertrand Chapron ${ }^{4}$ ©
${ }^{1}{ }^{1}$ eOdyn Brest, Plouzané, France, ${ }^{2}$ IMT Atlantique, Brest, Plouzané, France, ${ }^{3}$ Hytech-Imaging Brest, Plouzané, France, 'Ifremer LOPS Brest, Plouzané, France

Merging AIS and altimetry - Multiscale Inversion for Ocean
 Surface Topography (MIOST) tool

Based on
Optimal Interpolation

(Ubelmann et al., 2021)

- Decomposition of the signal in different components:

$$
x=x_{\text {geo }}+x_{\text {ek }}+x_{\text {inertie }} \cdots
$$

- Projection of each component on a wavelet basis

Example for the geostrophic component

Time mean (2019-2020) of Agulhas Current

Results : Chlorophyll a Sentinel 3

Results : Chlorophyll a Sentinel 3

Anormal behaviors of vessels

Ray swell propagation

$$
\begin{gathered}
\frac{d x}{d t}=\frac{\partial \Omega}{\partial k} \\
\frac{d k}{d t}=-\frac{\partial \Omega}{\partial x} \\
\Omega(k, x)=\sqrt{g k}+k \cdot u
\end{gathered}
$$

(Quilfen et al., 2018)
(Quilfen and Chapron, 2019)

Annual Mean (2019)

Differences (2019)

Example: April the 1st (2019)

300 meters

300000 tons

- On going Work
- Difficulties of the commercial vessels are due to the effect of the wind blowing against the current and/or Focusing of the Ray swell
- Classifying the vessels following their behaviors/difficulties
- Validation with SWIM and Altimeter

