Sea ice signature in SWIM off-nadir echoes

Charles Peureux^{*1}, Nicolas Longépé², Alexis Mouche³, Celine Tison⁴, Cédric Tourain⁵, and Jean-Michel Lachiver⁵

¹Collecte Localisation Satellites – Collecte Localisation Satellites, Collecte Localisation Satellites –

France

²European Space Research Institute – Italie

³Laboratoire dÓcéanographie Physique et Spatiale – Institut français de Recherche pour l'Exploitation

de la Mer – France

⁴CNES – Centre National d'Etudes Spatiales - CNES (Toulouse, France) – France

⁵CNES – Centre National d'Etudes Spatiales - CNES (Toulouse, France) – France

Résumé

An algorithm was developed that is able to quantify the probability of open water versus sea ice presence in SWIM off-nadir echoes. It is an improvement from previous flagging methods based on ECMWF sea-ice forecasts, regardless of SWIM backscatter measurements. The objectives are twofold: being able to improve the flagging of SWIM ocean waves spectra impacted by the presence of sea ice, and providing a new insight into the ability of nearnadir Ku band radars to characterize sea-ice. For that purpose, various tools have been developed, especially a fully analytical Geophysical Model Function for SWIM echoes over the ocean and a proper statistical framework for the combination of beam estimates into a higher level product. In addition, sea ice concentration estimates have been performed which open the way for promising studies. Results are presented: sea-ice flag and concentration maps, colocations with Sentinel-1, etc ...

^{*}Intervenant