

skim → UNDERSTANDING OCEAN SURFACE MOTION

Upgrading SWIM? The SKIM design

Presented by F. Ardhuin on behalf of SKIM Team CFOSAT Science Team Meeting, March 2021

European Space Agency

www.esa.int

The ESA Earth Explorer 9 context

The "Sea surface KInematis Multiscale monitoring" mission candidate was a finalist for the EE9 competition... but FORUM, the other candidate was selected in Sept. 2019 For implementation as EE9.

However, the successful phase A led to a recommendation to "find other ways and means" to implement SKIM.

Possible operational follow-up of SWIM on S3NG.

NB: SKIM's goal for EE9 was focused on surface current, sea state was another important objective. Please see the "Report for Mission Selection" for full details.

ESA UNCLASSIFIED - For Official Use

SKIM | CFOSAT Science Team Meeting | 15-17 March 2021 | Slide 2

= II 🛌 := 🖛 + II 🗯 🚝 = II II = = = 12 🖬 🖬 🚺 II = := II 🗰

SKIM vs SWIM

SKIM design is different from SWIM in many ways: most important: **PRF (less noise), footprint size (less directive), Doppler**

- WW3 spectrum (input to R3S simulator)
- Simulated SWIM spectra (100 realisations)
- Simulated SKIM spectra (100 realisations)

SWIM : Surface Waves Investigation and Monitoring (CNES)

- Rotating range resolved radar
- Ku-band (13.5 GHz)
- ~ 200 pulses / cycle
- 10 degree incidence
- PRF : 5.2 kHz
- Altitude : ~ 519 km
- 18 km x 18 km beam footprint

SKIM : Sea surface KInematics Multiscale monitoring (ESA EE9)

- Doppler enabled
 SWIM-like sensor
- Ka-band (35 GHz)
- 1024 pulses / cycle
- 12 degree incidence
- PRF : 32 kHz
- Altitude : ~ 838 km
- 6 km x 6 km beam footprint

ESA UNCLASSIFIED - For Official Use

SKIM | CFOSAT Science Team Meeting | 15-17 March 2021 | Slide 3

Fine pointing: Fundamental to a Doppler mission

- Accurate pointing Knowledge is fundamental to the SKIM mission
- By placing the AOCS sensors on the antenna, the main residual pointing uncertainty is from thermo-elastic deformations of the antenna.

ESA UNCLASSIFIED - For Official Use

------ arch 2021 | Slide 4

Level-2 nadir altimetry performance

- Scenario: 1 month of simulated L1b data using the ESA/CNES/CLS Sentinel-3 simulation tool (configured for SKIM radar parameters) realistic scene.
- Metric M6: Total RSS uncertainty of sea surface height computed for the nadir beam ≤3.2 cm after all geophysical corrections are made.

Parameter	SKIM nadir beam uncertainty (cm)	JASON-3 GDR uncertainty (cm)
Altimeter noise	<1.4	1.7
Ionosphere	0.3 (1)	0.5
Sea State Bias	2.0 (1)	2.0
Dry Troposphere	0.7 (1)	0.7
Wet Troposphere	1.5 (2)	1.2
RSS Altimeter range	3.0	3.0
RMS Orbit (radial component)	1.0 ⁽³⁾	1.0
Total RSS Sea Surface Height	3.2	3.2
Total RSS Significant wave height <i>(Hs)</i>	9.5 ⁽⁴⁾	11.2

SKIM can meet Level-2 nadir altimetry performance requirements

SKIM | EE9 User Consultation Meeting | Cambridge, UK | 16-17 July 2019 | Slide 29

ESA UNCLASSIFIED - For Official Use

Wave directional spectrum: example

· = ⅠⅠ ▶ ⅠⅠ = + ⅠⅠ = ≔ = ⅠⅠ ⅠⅠ = = = ∺ ■ Ⅰ ⅠⅠ = ∃∎ ⊡ ₩ ⊨

Wave directional spectrum: example

Spectrum variance is smaller on SKIM leading to better performances in terms of retreived maximum wavenumber limits.

ESA UNCLASSIFIED - For Official Use

SKIM | CFOSAT Science Team Meeting | 15-17 March 2021 | Slide 8

Wave directional spectrum

SKIM can meet wave mission performance requirements

ESA UNCLASSIFIED - For Official Use

SKIM | CFOSAT Science Team Meeting | 15-17 March 2021 | Slide 9

1D range-resolved wave spectral intensity

Scenario: Simulated range-resolved intensity spectra <u>before</u> bias removal for a mean sea state with 12° degree beam at 45° azimuth to the swell-direction.

Results: mean of 100 simulations, with the shaded area indicated the $1-\sigma$ interval. The blue lines correspond to the Doppler-resolved case.

TUDelft

SKIM can meet wave spectral intensity performance requirements

ESA UNCLASSIFIED - For Official Use

SKIM | CFOSAT Science Team Meeting | 15-17 March 2021 | Slide 10

1D range resolved wave spectral intensity

Scenario: Simulated intensity spectra <u>after</u> bias removal for a mean sea state with 12° degree beam at 45° azimuth to the swell-direction.

Results: mean of 100 simulations, with the shaded area indicated the $1-\sigma$ interval. The blue lines correspond to the Doppler-resolved case.

TUDelft

Metric M5: RMS difference between the wave spectral moment P=[0, 1, 1.5 and 2] compared to truth <10%.

Quantity				
Dominant direction, Doppler-resolved	5.5%	5.5%	5.5%	5.5%
Dominant direction, real-aperture	10.9%	10.7%	10.9%	11.2%
45° azimuth, Doppler-resolved	3%	2.5%	2.5%	2.6%
45° azimuth, real-aperture	8%	3.7%	3.6%	3.7%

$$0 = Hs^2$$

P1 = wave orbital velocity variance

- P1.5 = Stokes drift
- P2 = mean square slope

SKIM can retrieve wave-spectra for wavelengths under 10 m, exceeding the requirement (30 m).

ESA UNCLASSIFIED - For Official Use

SKIM | CFOSAT Science Team Meeting | 15-17 March 2021 | Slide 11

SKIM vs SWIM: Summary and Conclusions

- First global coverage Doppler Mission: HF-radar in space
- Higher PRF gives lower noise: possible to resolve shorter wave components (good for Stokes drift or msv)
- Smaller footprint: less directive spectrum, even more so with Doppler beam sharpening
 - possible deconvolution of measured spectrum by known system response
 - allows mapping waves where azimuth does not match wave azimuth: filling the swath
- Choice of Ka-band has benefits for atmospheric effects on SKIM is a high-performance scientific mission with long term implications for future science and societal applications and Doppler oceanography.

SKIM | CFOSAT Science Team Meeting | 15-17 March 2021 | Slide 12

ESA UNCLASSIFIED - For Official Use

_ II ⊾ :: ■ + II ■ ½ _ II II _ _ : = :: II W

Questions

forum → UNDERSTANDING HOW EARTH IS LOSING ITS COOL skim → UNDERSTANDING OCEAN SURFACE MOTION 0000000 00

Team SKIM

European Space Agency

*