

Wave-current interactions:

a new view of how surface currents influence wave properties using CFOSAT-SWIM data

Gwendal Marechal¹, Fabrice Ardhuin¹, Sophia Brumer², Jean Marc Delouis¹, Antoine Grouazel¹

1: Laboratoire d'océanographie physique et spatiale LOPS-Ifremer-IRD-CNRS 2. France Energies Marine

Outlines

- > Introduction
- Presentation of data
- ➤ Effects of Agulhas current on the waves spectrum
- > Perspectives and conclusion

Introduction:

Momentum exchanges Mixing, Langmuir circulation Stokes drift advection

Waves

• • •

Surface currents

Refraction Advection of wave action Doppler shift Breakings

• • •

Observation of wave properties variability due to

meso- and submesoscale surface current effects

(locally and not locally)

- Refraction (change of wave direction)
- Doppler shift (change in wavenumber)
- (Kudryavtsev et al 2017b, Romero et al. 2017, and others works)

=>induce a change in significant wave height

- <u>Retrieve surface currents</u> from wave
 measurements (Villas Boas et al. 2020)
- <u>Validation of wave models</u> in strong surface current field (Marechal and Ardhuin 2021)

- <u>Observation</u> of wave properties variability due to meso- and submesoscale surface current effects (locally and not locally)
 - Refraction (change of wave direction)
 - Doppler shift (change in wavenumber)
 - (Kudryavtsev et al 2017b, Romero et al. 2017, and others works)

=>induce a change in significant wave height

 <u>Retrieve surface currents</u> from wave measurements (Villas Boas et al. 2020)
 <u>Validation of wave models</u> in strong surfa

Villas Boas et al. 2020

- <u>Observation</u> of wave properties variability due to meso- and submesoscale surface current effects (locally and not locally)
 - Refraction (change of wave direction)
 - Doppler shift (change in wavenumber)
 - (Kudryavtsev et al 2017b, Romero et al. 2017, and others works)

=>induce a change in significant wave height

- <u>Retrieve surface currents</u> from wave
 measurements (Villas Boas et al. 2020)
- <u>Validation of wave models</u> in strong surface current field (Marechal and Ardhuin 2021)

Romero et al. 2017

Marechal and Ardhuin 2021

Observation of wave properties variability due to

meso- and submesoscale surface current effects

(locally and not locally)

- Refraction (change of wave direction)
- Doppler shift (change in wavenumber)
- (Kudryavtsev et al 2017b, Romero et al. 2017, and others works)

=>induce a change in significant wave height

- <u>Retrieve surface currents</u> from wave
 measurements (Villas Boas et al. 2020)
- <u>Validation of wave models</u> in strong surface current field (Marechal and Ardhuin 2021)

Global view of one SWIM pass the 11th June 2019

<u>SWIM DATA</u>: Two SWIM products used (1)

<u>SWIM DATA</u>: Two SWIM products used (2)

Each ribbon is a 1D spectrum E(k).

Distance between each semi macrocycle is different for each offnadir beams.

Working on modulation (next step working on wave spectrum).

SWIM altimetry

SWIM altimetry

is not straightforward here!

- One 2D spectrum for each box for all incidences.
 - Noise in the measurements is reduced due to the averaging of several spectra in the boxes.
 <u>BUT</u>
 - Boxes location is assimilated to a point (LON,LAT), waves variability at scales smaller than 70km is lost.
- What about using the fact that swim beams do not look at the same location for their different incidences without averaging?

21

<u>Wave height using off-nadirs</u> <u>beams:</u>

- Observation of small-scale open ocean currents effects on wave height
- ➤ Dealing with a large amount of light memory data (≠ SAR or optical data).

Coming works:

- Quantify parameters that induce changes in fluctuation spectra (azimuths, wind speed, incident angles, ...)
- Need to switch from fluctuation spectrum to wave spectrum (preliminary works in progress...)

Conclusion:

- Quick changes in significant wave height are well captured by the altimeter onboard SWIM.
- Averaged waves parameters in 70km x 90km boxes do not capture small scales currents effects on waves.
- Promising results to observe how small surfaces scales affect the properties of waves using a combination of local 1D spectrum.
 - Need to better understand the SWIM speckle noise and parameters needed to define a MTF between fluctuations and waves spectrum.
- ... need to measure waves and currents both simultaneously and at high resolution (SWOT, SKIM, STREAM)

Orientation

Preliminary test on Gulf Stream simulation

SROLL OUTPUT WW3 SIMULATION

Orientation

Thank you!

CFOSAT CalVal mission 2021 Scientific team.