

CFOSAT 2nd International Science team Meeting CFOSAT and Sentinel-1 intercomparisons for Significant Wave Height measurements

March 2021 Visio meeting LOPS SIAM(1) - University of Hawaii(2) Antoine Grouazel(1), Justin Stopa(2), Alexis Mouche(1) and Bertrand Chapron(1)

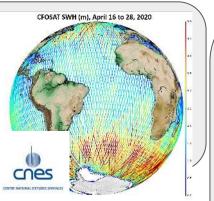
Abstract

This study provides a comparison between CFOSAT and Sentinel-1 wave measurements. Recently, new methods have been developed to analyze Sentinel-1 C-band SAR data acquired over open ocean in the so-called Wave Mode for estimating the significant wave height [Quach et al., 2020] and for classifying the images with respect to the dominant geophysical parameter [Wang et al., 2019]. These two informations are systematically derived from Sentinel-1 A and Sentinel-1 B measurements collocated with CFOSAT. The significant wave height as measured by CFOSAT and Sentinel-1 are then compared. Performances (RMSE, correlation and bias) are presented and analyzed with respect to geographical location, wind regimes and dominant geophysical signatures captured by the SAR. Emphasis on complex situations and/or inconsistent cases are discussed.

Datasets

CFOSAT SWIM Ku-band spectrometer nadir beam Level-2 CWWIC at box 70 x 90 km resolution. Adaptive retracking algorithm.

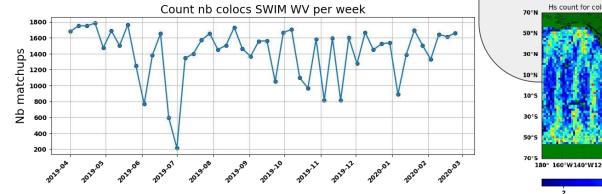
CFOSAT and Sentinel-1 units present heliosynchronous orbits that offer very long matchups opportunities. The time criteria used for this study is +/-2 hours and 100 km radius.

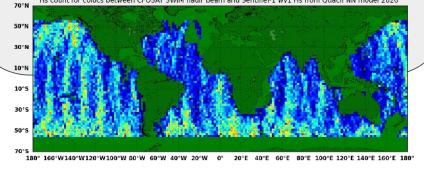


Aviso altimetry courtesy.

Sentinel-1 A & B WV C-band SAR. Leapfrog acquisitions 24° and 37° incidence angle every 200 km (~3 seconds) at global scale, Hs dataset build using Quach et al 2020 NN model develop at University of Hawaii and operated at IFREMER in the frame of 2 ESA projects:

- Sentinel-1 MPC (Mission Performance Center)
- CCI Sea state (algorithm selected for official CCI datasets)





Nb pts (total: 33291)

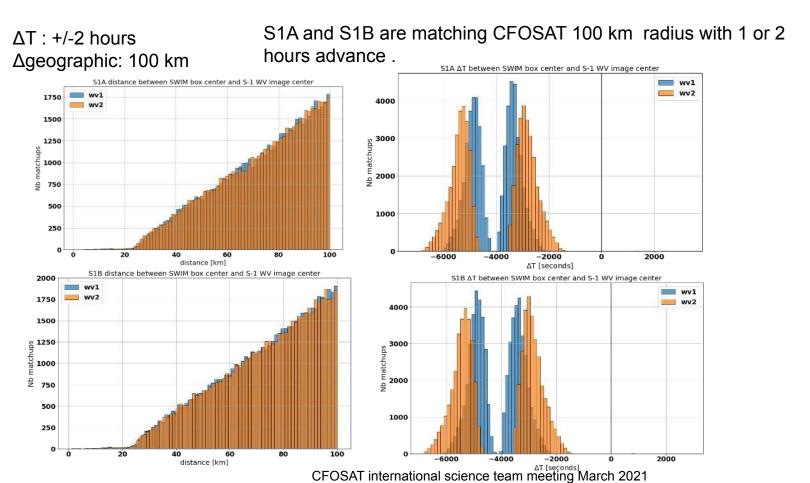
12

14

CFOSAT international science team meeting March 2021

18

Matchups between SWIM and Sentinel-1 WV



IFEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

Deep Learning for Predicting Significant Wave Height From Synthetic Aperture Radar

Brandon Quach[®], Yannik Glaser[®], Justin Edward Stopa[®], Alexis Aurélien Mouche[®], and Peter Sadowski

aperture radars (SARs) provide near-global coverage of the A geophysical quantity of particular interest is the significant world's oceans every six days. We curate a data set of collocations between SAR and altimeter satellites and investigate the use of deep learning to predict significant wave height from SAR. While previous models for predicting geophysical quantities from SAR rely heavily on feature-engineering, our approach learns directly from low-level image cross-spectra. Training on collocations from SAR are slow and perform poorly in windy conditions typical 2015 to 2017, we demonstrate on test data from 2018 that deep learning reduces the state-of-the-art root mean squared error by 50%, from 0.6 to 0.3 m when compared to altimeter data. Furthermore, we isolate the contributions of different features to the model performance.

Index Terms-CWAVE, deep learning, machine learning, neural networks, Sentinel-1, significant wave height, synthetic aperture radar (SAR).

I. INTRODUCTION

submesoscale phenomena with unprecedented coverage, 0.6-m root mean squared error (RMSE) [10]. However, the resolution, and frequency. By measuring the backscatter from WAVEWATCH3 targets are only an estimate of H_g and are the ocean surface. SAR captures information about ocean known to be unreliable in high sea states [18]-[20]. swells and sea surface roughness at high spatial resolutions (<10 m) [1], from which many oceanic, atmospheric, and reduced representation of the modulation cross-spectra: a set biologic phenomena can be identified [2]. The two Sentinel- of 22 engineered features known as CWAVE [13]. Such 1 satellites of the European Space Agency (ESA) take regular dimensionality-reduction methods can be very useful, but SAR measurements of the ocean surface, together covering the often come at the cost of discarding relevant information. entire globe every six days [3], and have already accumulated We hypothesize that the SAR image modulation spectra conmore than 600 TB of level-1 (1.1) wave mode data. However, tains additional information about H, that is lost by the in order to take full advantage of this technology and the tor- CWAVE dimensionality-reduction step. We propose to learn rent of data being produced, new methods are needed to extract the relevant intermediate data representations using deep learnuseful information from the high-dimensional measurements. ing with artificial neural networks, similar to what has been Sea state information extracted from SAR has been instrumental in understanding swell decay [1], [4], [5], improving physics [22]-[24]. swell propagation in numerical models [6], and predicting swell amplitudes and arrivals times by assimilation into numerical models [7]. SAR can also be used to estimate extreme

Manuscript received February 14, 2020; revised May 22, 2020; accepted June 8, 2020. (Corresponding author: Justin Edward Stopa.) Brandon Quach is with the Computing and Mathematical Sciences Department, California Institute of Technology, Basadena, CA 91125-0002 USA, and also with the Information and Computer Sciences Department, University of Hawai'i at Mānoa, Honolulu, HI 96822 USA. Yannik Classer and Peter Sadraski are with Information and Com

Sciences Department, University of Hawai'i at Manou, Honolulu, HI 96822 Justin Edward Stopa is with Ocean Engineering Department, University of

Hawai' at Manoa, Honolala, HI 96822 USA (e-mail: stopa@hawaii.edu). Alexis Aurélien Mouche is with the Univ. Brest, CNRS, IRD, IFRE MER, Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, 29280 Brest, France. Color versions of one or more of the figures in this article are available

online at http://secexplore.sece.org Digital Object Identifier 10.1109/TGRS 2020.3003839

0196-2892 @ 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.iece.org/publications/rights/index.html for more information.

Abstract-The Sentinel-1 satellites equipped with synthetic sca states in extra-tropical and tropical cyclones [8]-[10]. wave height, H₁, defined as the mean of the top third of a wave height distribution, and estimating H_I from SAR has immediate practical uses in alerting ships to dangerously large waves. Traditional "inverse" algorithms for inferring H, from of most storms [11], [12] because of the complex nonlinear mechanism involved in the image synthesis when observing moving scenes. As a result, several recent studies have focused on data-driven statistical models [8]-[10], [13].

Previous data-driven approaches for predicting H, from SAR used small data sets of buoy observations as targets for training (<5000 examples) [14]-[16], or numerical models of global wave generation such as WAVEWATCH3 [8]. [10], [13], [17]. The current state-of-the-art method uses a C YNTHETIC aperture radar (SAR) enables us to measure neural network trained on the latter, and predicts H₂ with

Furthermore, the neural network in [10] relies on a

In this work, we address both limitations of current datadriven H_3 prediction models. First, we curate a data set containing direct observations of ocean wave heights by identifying 750,000 collocations of SAR and altimeter satellites. Second, we train a statistical model to extract information directly from low-level SAR image spectra using deep learning. Finally, we analyze the importance of the different inputs to this model, and its performance in different settings.

II. DATA AND METHODS

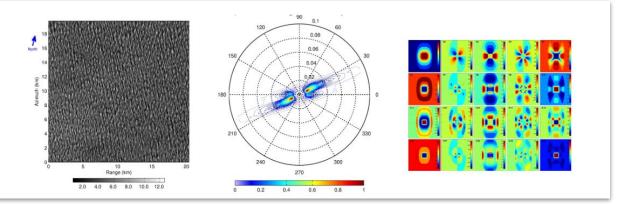
A. Sensors, Collocations and Preprocessing

Our first contribution is a data set of historical measure ments from two types of polar-orbiting satellites: Sentinel-1 SAR satellites and altimeter satellites. Because the satellites are in different orbits, their paths intersect, providing

This algorithm has been published in IEEE TGRS in 2020.

The method aims at investigating the use of DL to start from X-spectra instead of using a predefined decomposition of the x-spectra (so-called CWAVE parameters).

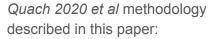
This algorithm has been compared against other algorithms in the framework of CCI and proved to be better for Hs.



Example of Real part of X-spectra and the 20 parameters computed from the spectra for CWAVE

SAR NN model to get Hs from WV cross spectra

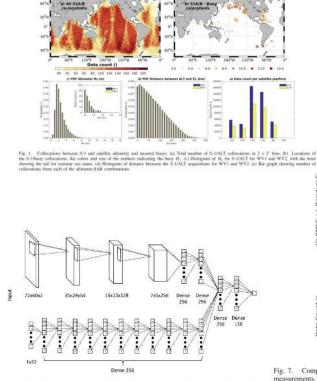
QUACH et al.: DEEP LEARNING FOR PREDICTING SIGNIFICANT WAVE HEIGHT FROM SAR



https://authors.library.caltech.edu /104562/1/09143500.pdf

Source datasets for NN model training:

- Sentinel-1 WV L2 polar cross spectra + radar parameters
- 2. Altimeter database from IMOS (Young et al). CFOSAT SWIM measurement are not considered in the training dataset.



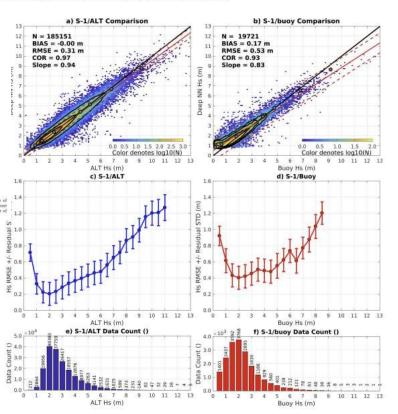
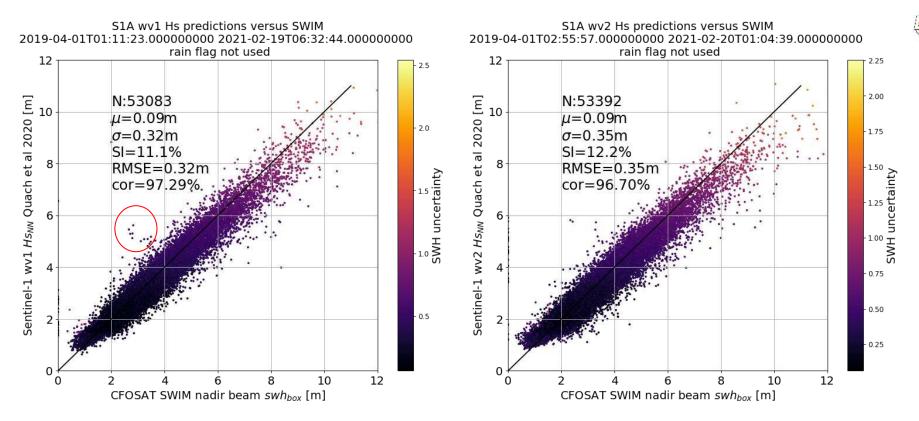


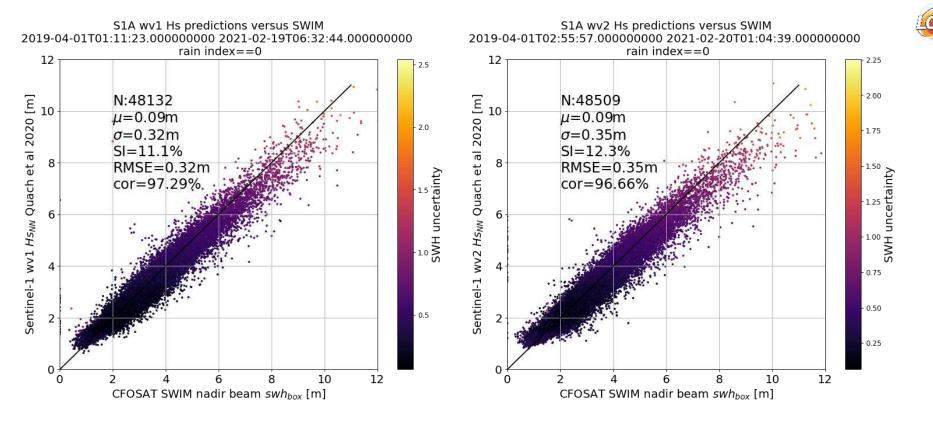
Fig. 3. DNN architecture with two input types. (Top) SAR image spect comprising one real and one imaginary channel. (Bottom) 32 scalar-value features. The SAR images are processed by multiple 2-D convolution laye before the two branches of the network are combined by three dense layers at the output. We predict H_s in this work, but we expect that the same model architecture could be used to predict other sea state parameters given an adecuate training data set.

Fig. 7. Comparison of test predictions against (Left) altimeter collocations and (Right) buoy collocations. (a) and (b) Scatter plots of predictions versus measurements. (c) and (d) Plots of prediction RMSE versus measured H_n, where the data count is given in black text. In the top panels, the color denotes data density in 0.1-m bins, solid red lines represent a least square linear regression, and the dashed lines represent 90% of the data. The black contours represent H₀, with equatible-quantile pointile points for (%, 90%, 90%, 90%, 90%, 90%, 90%).

Overall collocations Hs statistics



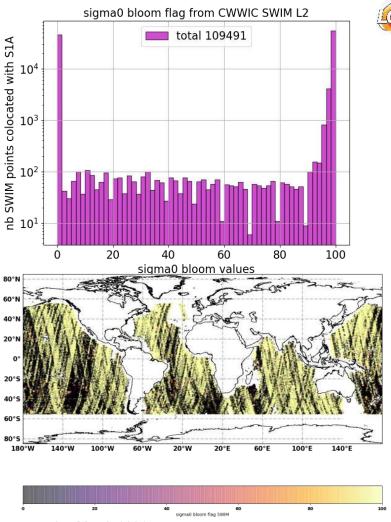
The Hs provided by NN model is associated to an uncertainty value. In Quach et al 2020 this uncertainty is the standard deviation of the difference between NN predictions and reference dataset. The 2 figures above are showing that this metric is directly linked with the Hs value but is not performant to detect anomalous observations-predictions.

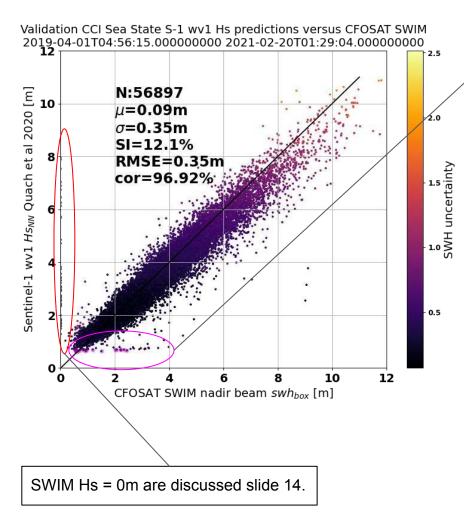


The rain flag provided by CWWIC in the L2 SWIM nadir product allows to remove some outliers. Overall, it doesn't change significatively the performances (even if it reduces by 16% the number of points). This could be a clue that this flag could be improved. While the sigma0 bloom flag provided is not usable in the latest 5.1.2 version.

SWIM sigma0 bloom flag

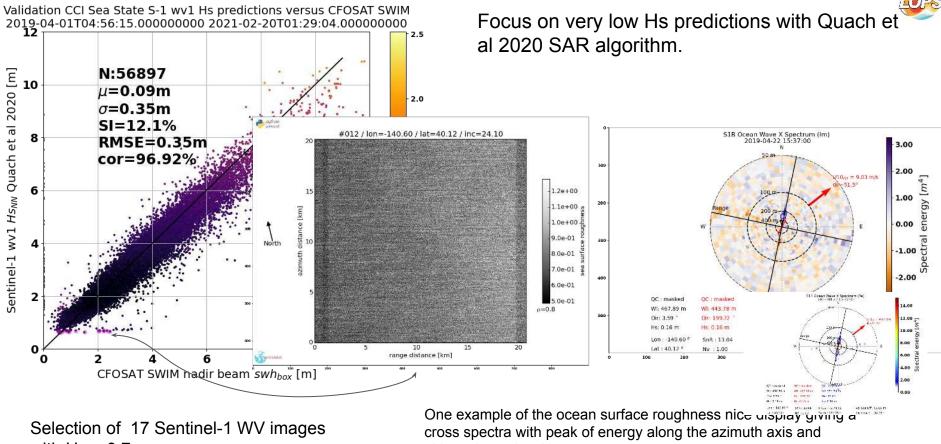
SWIM sigma0 bloom flag is designed to filter very low backscatter regions where the Hs retrieval using the altimeter waveforms is not possible or susceptible to be biased. The content of this flag is for now not usable because more than 50% of SWIM boxes are set to 100% bloom. The map is also showing no regional patterns but only full orbits flag with the same value.





Focus on very low Hs predictions with Quach et[®] al 2020 SAR algorithm.

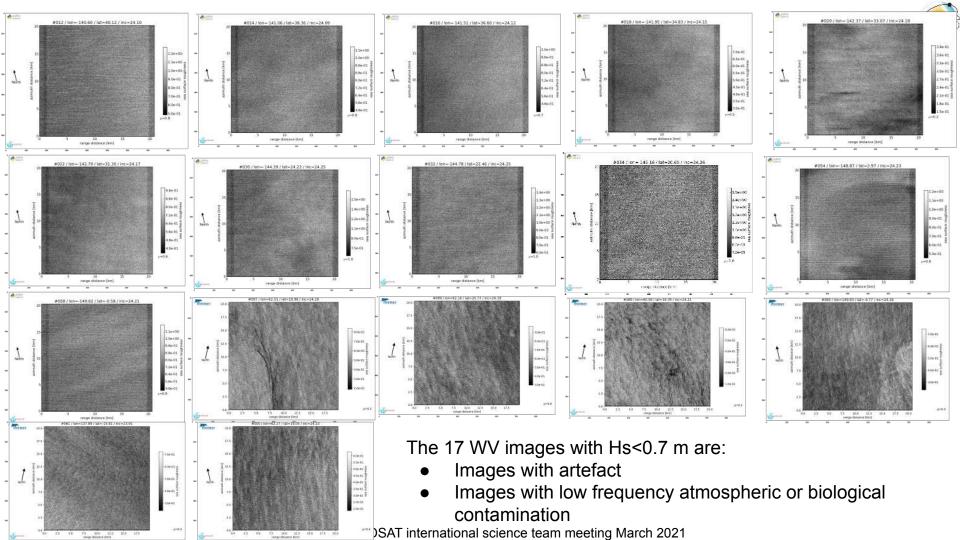
Selection of 17 Sentinel-1 WV images wit Hs < 0.7m

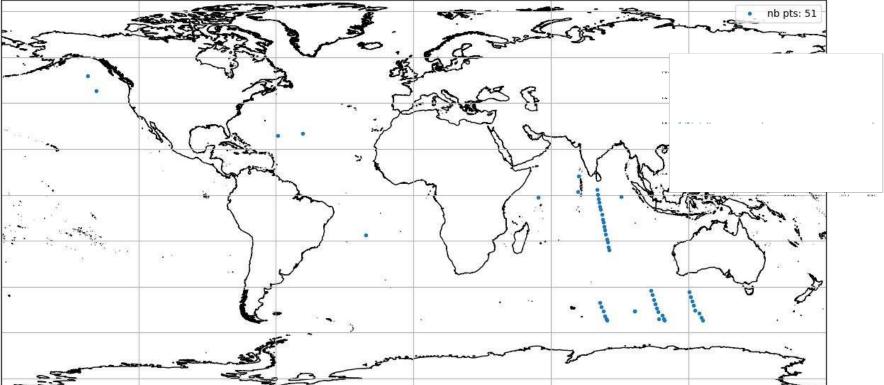


with Hs < 0.7m

ultimately too low Hs.

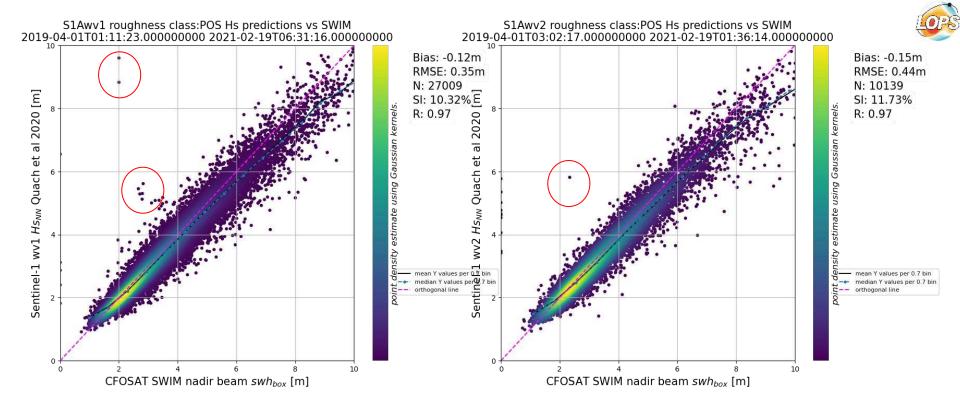
This image is showing vertical black lines that are artefacts impacting spectral Fourier transform and then Hs retrieval.



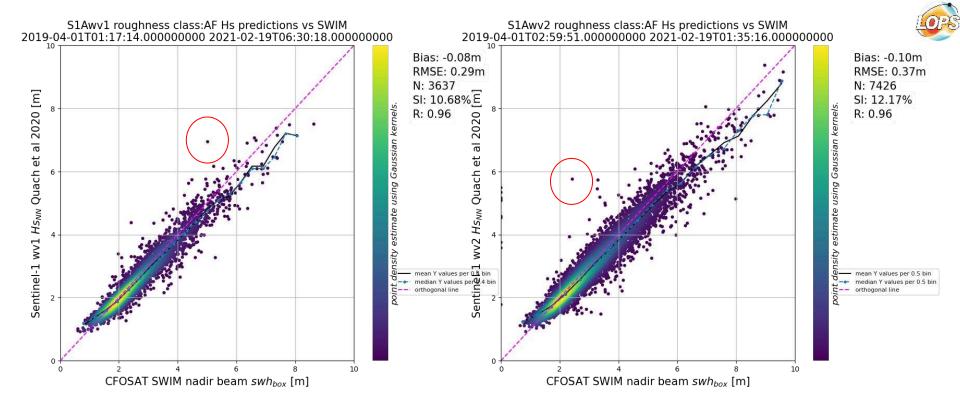


SWIM Hs = 0 m

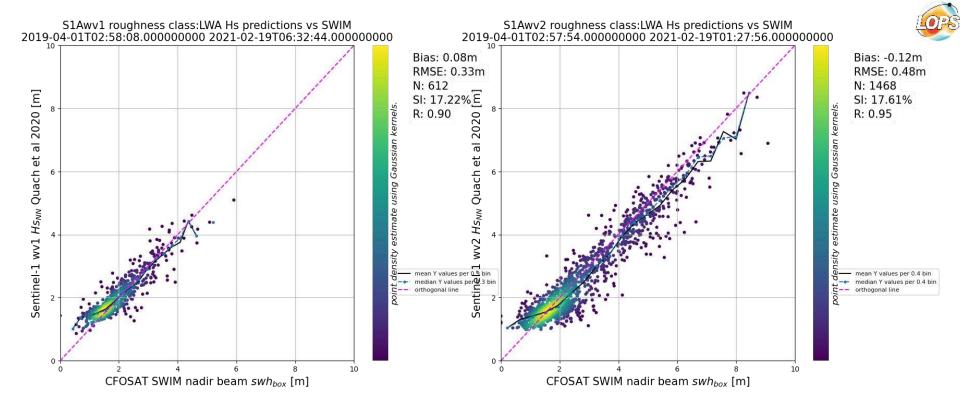
Few SWIM Hs are equal to zero m. They are located along same orbits at the beginning of the mission in 2019, it is very likely corrupted files.



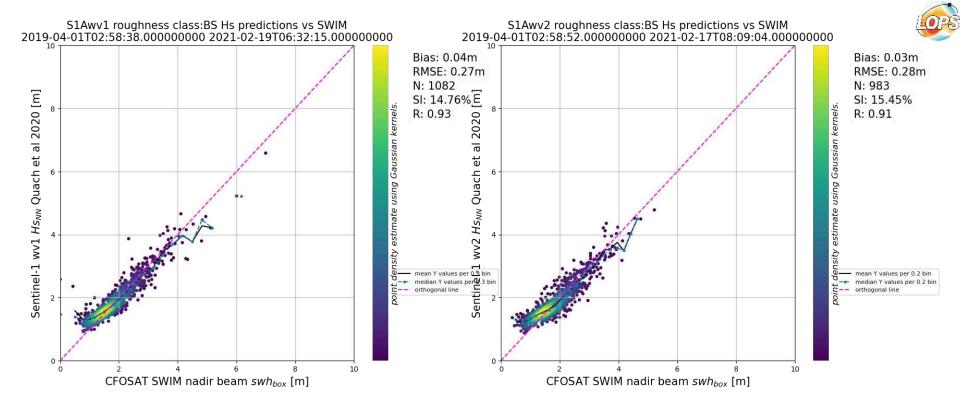
WV classified as "Pure Ocean Swell" by the Deep Learning algorithm developed by Chen et al 2018: <u>https://www.seanoe.org/data/00456/56796/</u>



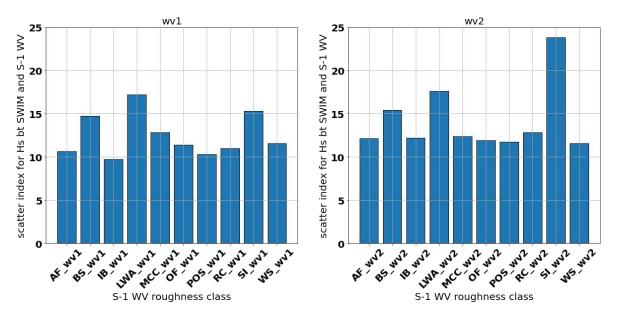
WV classified as "Atmospheric Front" by the Deep Learning algorithm developed by Chen et al 2018: <u>https://www.seanoe.org/data/00456/56796/</u>



WV classified as "Low wind speed Area" by the Deep Learning algorithm developed by Chen et al 2018: <u>https://www.seanoe.org/data/00456/56796/</u>

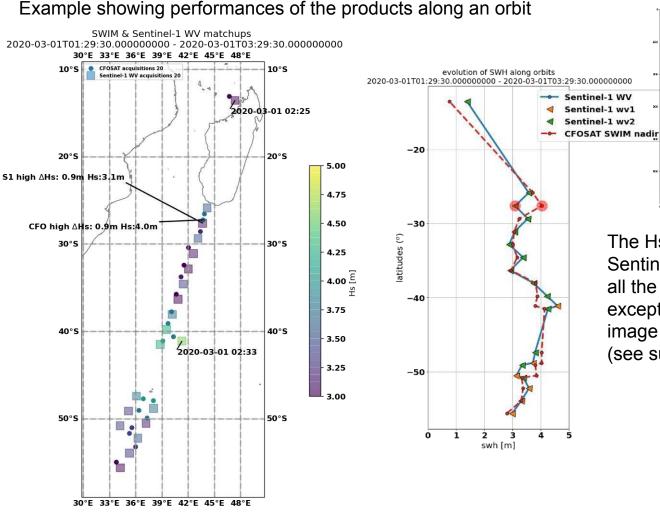


WV classified as "Biological Slicks" by the Deep Learning algorithm developed by Chen et al 2018: <u>https://www.seanoe.org/data/00456/56796/</u>



This figure is illustrating the fact that for some SAR images containing non wave geophysical features, the Hs retrieval is not giving the same performances. For instance we can see that the class SI (sea Ice), or LWA (Low Wind Area) have scatter about ~40% higher than Pure Ocean Swell (POS).

3 case studies to illustrate the performances of both products



CFOSAT international science team meeting March 2021

Ifremer

North

17.5

15.0

₹ 12.5

10.0

7.5

5.0

The Hs given by SWIM and

Sentinel-1 are in good agreement for

image show the presence of rain cell

all the matchups along this orbit

except for cases where the SAR

(see surface roughness above).

10.0 12.5 15.0 17.5 20.0

range distance [km]

-1.8e+00

1.60+00

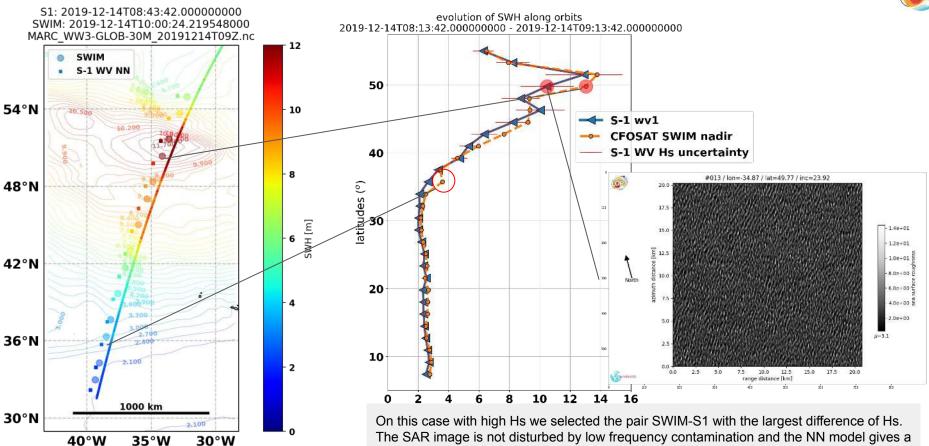
140+00

1.2e+00

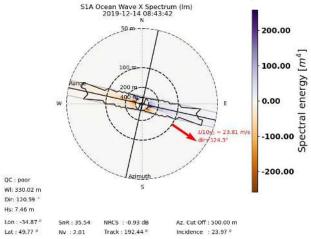
1.0e+00

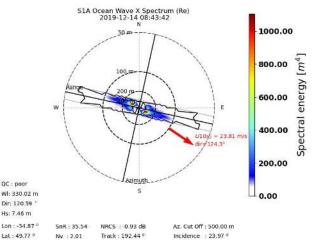
8.0e-01

6.0e-01

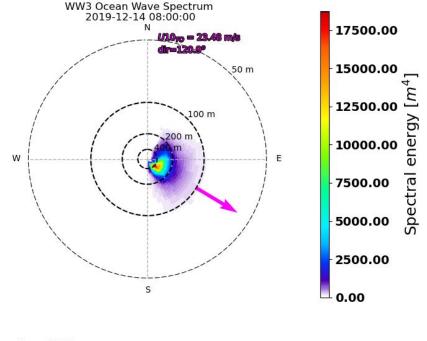


The SAR image is not disturbed by low frequency contamination and the NN model give 11 m Hs while SWIM nadir beam is measuring 13 m. This is explained by the sharp sea state change within the 100km separating SWIM and the WV1.



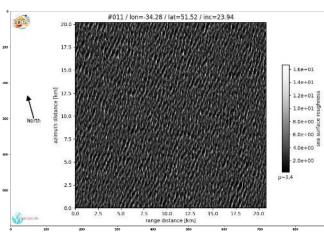


Cross Spectra (real and imaginary part) + WW3 wave height spectra associated to the suspect WV Hs.

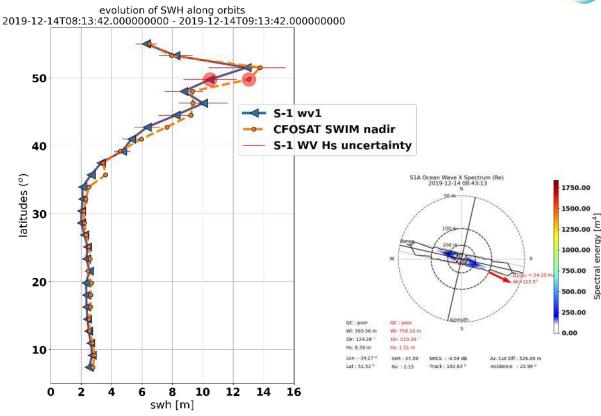


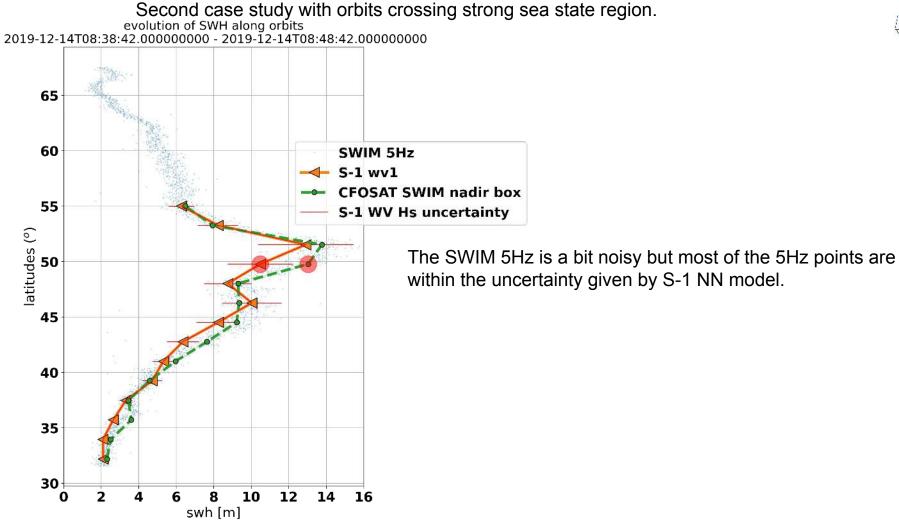
Lon : -35.00 ° Hs_{grid} : 10.86 m

Lat : 50.00 °



the WV1 just before (#011) 200 km North is in better agreement with SWIM while both products indicate higher Hs. It is simply due to the fact that this matchup has a closer spatial distance and less Hs gradient between the 2 points. This a very encouraging result to see that both products manage to provide Hs with less than 50cm difference within a 13-14m Hs.





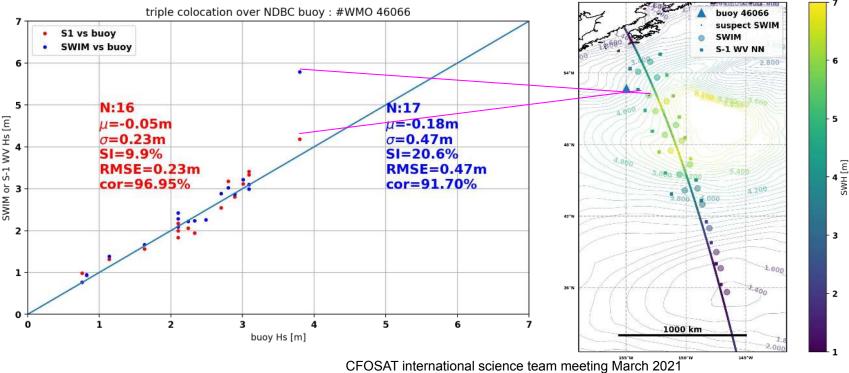
This second case study shows that both products seem to give coherent Hs even in Hs above 12m. It also suggests that colocations between the 2 products should be done with smaller spatial distance. This could be achieve using the intermediate resolution product at 1 Hz for SWIM.

Triple collocations (April 2019-now) over a buoy: **SOUTH KODIAK - 310NM SSW of Kodiak, AK**

On this example we can see that the SWIM have a point that is +1.8m above S-1 and the +2m wrt the buoy. The collocations is may be too loose on geographic criteria (100 km), while the time and space energy distribution within the 2 products seems coherent.

WMO 46066

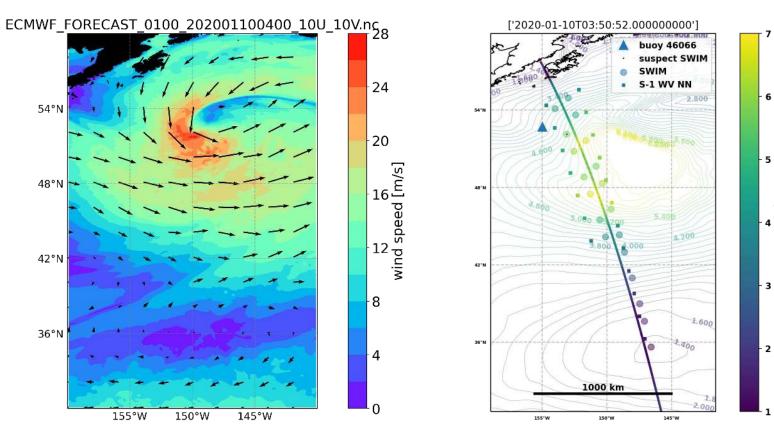
Owned and maintained by National Data Buoy Center 3-meter discus buoy SCOOP payload 52.765 N 155.009 W (52°45'53" N 155° 0'32" W) ['2020-01-10T03:50:52.000000000']



Triple collocations (April 2019-now) over a buoy: SOUTH KODIAK - 310NM SSW of Kodiak, AK

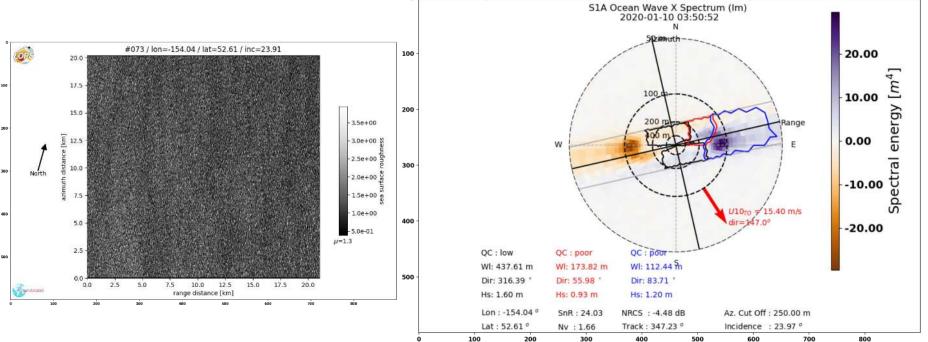
6

4 [m] HMS

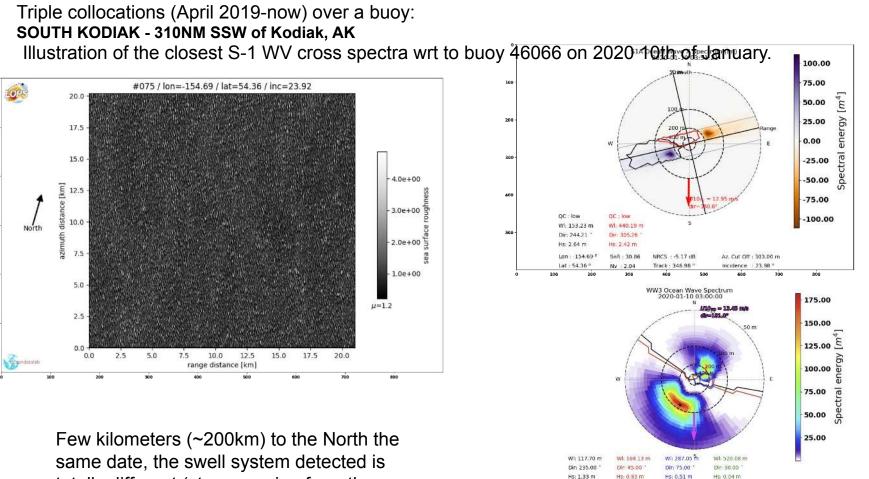


Triple collocations (April 2019-now) over a buoy: SOUTH KODIAK - 310NM SSW of Kodiak, AK

Illustration of the closest S-1 WV cross spectra wrt to buoy 46066 on 2020 10th of January.



The main swell system dominated by the strong winds blowing to the East gives a quite clean SAR scene.



same date, the swell system detected is totally different (storm coming from the North East).

CFOSAT international science team meeting March 2021

Lon : -154.50 1

Lat: 54.50 °

HSgnd : 3.62 m

Conclusions

Independent estimates of Hs from CFOSAT (nadir beam) and Sentinel-1 (WV1 an WV2) acquisitions have been collocated and compared.

Overall the agreement between the two sensors is very good no matter Sentinel-1 acquisitions modes:

- WV1 μ=0.09m σ=0.32m
- WV2 μ=0.09m σ=0.35m

Surprisingly, the use of the rain flag as provided in CFOSAT (nadir beam) Level-2 product does not impact the results. However, the use of the SAR classification show that other geophysical phenomena (e.g. biological slicks) do impact the comparisons. The bloom flag as provided in CFOSAT (nadir beam) Level-2 product seems non-realistic.

Case study are also discussed. They confirm the ability of SAR and CFOSAT to capture the same sea state pattern at ocean basin scale. They also confirm the impact of geophysical phenomena such as rain on the comparisons.

A first attempt of triple colocation has been done on SOUTH KODIAK buoy. Overall it confirms the good consistency between SAR, CFOSAT and buoys:

- SAR-Buoy: *μ*=-0.05m σ=0.23m
- CFOSAT-Buoy: *μ*=-0.18m σ=0.47m

Perspectives

Further investigation are necessary to assess the impact of the other geophysical phenomena on CFOSAT and possibly help to refine the bloom flag and the potential/limitations of both missions in case of extremes.

The validation of the directional and wavelength information between the two sensors needs also to be pursued.

Thank you for reading, we are ready to answer your questions.